您现在的位置是: 首页 > 志愿填报 志愿填报

河南高考数学真题及答案解析,河南高考数学真题及答案

tamoadmin 2024-06-04 人已围观

简介1.近十年来的高考试卷 带答案 河南考卷 好像是全国卷1 数学,求能打印出来的。最好是word版的。谢谢了!2.求文档: 2004全国高考数学立体几何题3.河南高考数学试卷试题难不难,附试卷分析和解答4.河南数学考的全国几卷5.河南2023年高考数学难不难(适用于2011宁夏、海南、河南高考新课改)海南省海口市2011年高考调研测试数学试题(文)注意事项:1.本次考试的试卷分为试题卷和答题卷,本卷

1.近十年来的高考试卷 带答案 河南考卷 好像是全国卷1 数学,求能打印出来的。最好是word版的。谢谢了!

2.求文档: 2004全国高考数学立体几何题

3.河南高考数学试卷试题难不难,附试卷分析和解答

4.河南数学考的全国几卷

5.河南2023年高考数学难不难

河南高考数学真题及答案解析,河南高考数学真题及答案

(适用于2011宁夏、海南、河南高考新课改)

海南省海口市2011年高考调研测试

数学试题(文)

注意事项:

1.本次考试的试卷分为试题卷和答题卷,本卷为试题卷,请将答案和解答写在答题卷指定的位置,在试题卷和其它位置解答无效.

2.本试卷满分150分,考试时间120分钟.

参考公式:

样本数据,,,的标准差 锥体体积公式

其中为样本平均数 其中为底面面积,为高

柱体体积公式 球的表面积、体积公式

其中为底面面积,为高 其中为球的半径

第Ⅰ卷 选择题

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的;每小题选出答案后,请用2B铅笔把机读卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在本卷上作答无效)

1.设全集,集合,

,则图中的阴影部分表示的集合为 ( )

A. B.

C. D.

2.若复数是纯虚数,则实数的值为 ( )

A.1 B.或1 C. D.或3

3.在一次体检中,测得4位同学的视力数据分别为4.6,4.7,4.8,4.9,若从中一次随机抽取2位同学,则他们的视力恰好相差0.2的概率为

A. B. C. D.

4.关于平面向量,,,有下列四个命题:

① 若∥,,则,使得;

② 若,则或;

③ 存在不全为零的实数,使得;

④ 若,则.

其中正确的命题是 ( )

A.①③ B.①④ C.②③ D.②④

5.已知圆A: 与定直线:,且动圆P和圆A外切并与直线相切,则动圆的圆心P的轨迹方程是 ( )

A. B. C. D.

6.已知,则的值为 ( )

A. B. C. D.

7.设变量满足约束条件则目标函数的最大值为 ( )

A.7 B.8 C.10 D.23

8.设为两个不重合的平面,为两条不重合的直线,给出下列四个命题:

①若则;

②若,,则;

③若,则;

④若,则.

其中正确的命题为: ( )

A.①② B.①③ C.①②③ D.②③④

9.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析析式是 ( )

A.

B.

C.

D.

10.某程序框图如图所示,该程序运行后输出的值是( )

A.3 B.4

C.6 D.8

11.一个几何体的三视图如图所示,则该几何体的体积为 ( )

A.32 B.33 C.34 D.35

12.已知函数在R上满足,则曲线在点 处的切线方程是 ( )

A. B. C. D.

第Ⅱ卷 非选择题

二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡中的指定位置)

13.设向量,若向量与向量共线,则 .

14.在中,已知为它的三边,且三角形的面积为,则角C= .

15.已知椭圆C的方程为,双曲线D与椭圆有相同的焦点为它们的一个交点,,则双曲线的离心率为 .

16.已知函数在区间[1,2]上单调递增,则的取值范围是 .

三、解答题:(本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.请将答题的过程写在答题卷中指定的位置)

17.(本小题满分12分)

在等差数列中,,前项和为,等比数列各项均为正数,,且,的公比.

(Ⅰ)求与;

(Ⅱ)求.

18.(本小题满分12分)

某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学, 测得这100名同学身高(单位:厘米) 频率分布直方图如右图:

(Ⅰ) 统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为165)作为代表.据此,计算这100名学生身高数据的平均值;

(Ⅱ) 如果以身高达170cm作为达标的标准,对抽取的100名学生,得到以下列联表:

体育锻炼与身高达标2×2列联表

身高达标 身高不达标 总计

积极参加

体育锻炼 40

不积极参加

体育锻炼 15

总计 100

(ⅰ)完成上表;

(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系(K值精确到0.01)?

参考公式:K=,参考数据:

P(Kk) 0.40 0.25 0.15 0.10 0.05 0.025

k 0.708 1.323 2.072 2.706 3.841 5.024

19.(本小题满分12分)

在四棱锥P—ABCD中,平面平面,,底面ABCD是边长为2的菱形,,E是AD的中点,F是PC中点.

(Ⅰ)求证:

(Ⅱ)求证:EF//平面PAB。

(Ⅲ)求E点到平面PBC的距离

20.(本小题满分12分)

在平面直角坐标系中,已知两点和,定直线:.平面内动点总满足.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)设过定点的直线(直线与轴不重合)交曲线于,两点,

求证:直线与直线交点总在直线上.

21.(本小题满分12分)

已知函数.()

(Ⅰ)当时,求在区间[1,e]上的最大值和最小值;

(Ⅱ)求的极值

四、选考题(从下列三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分.请将答题的过程写在答题卷中指定的位置)

22.(本小题满分10分)选修4-1:几何证明选讲

如图,已知AB是⊙O的直径,C,D是⊙O上两点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.

求证:(Ⅰ)C是的中点;

(Ⅱ)BF=FG.

23.(本小题满分10分)选修4-4:坐标系与参数方程

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线的参数方程是(为参数),曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)设直线与曲线相交于,两点,求,两点间的距离.

24.(本小题满分10分)选修4-5:不等式选讲

设函数.

(Ⅰ)求不等式的解集;

(Ⅱ)若不等式的解集是非空的集合,求实数的取值范围.

一、选择题

1—5BCDBA 6—10ADBCD 11—12BC

二、填空题

13.2 14. 15. 16.

三、解答题

17.解:(1)由已知可得

解得或(舍去)

…………6分

(2)

…………12分

18.解:(Ⅰ)数据的平均值为: 145×0.03+155×0.17+165×0.30+175×0.30+185×0.17+195×0.03=170(cm)-----------5分

(Ⅱ) (ⅰ)

身高达标 身高不达标 总计

积极参加体育锻炼 40 35 75

不积极参加体育锻炼 10 15 25

总计 50 50 100

(ⅱ)K=1.33

故有75℅把握认为体育锻炼与身高达标有关系.-----12分

19.(Ⅰ)证明:∴AB=2,AE=1

∴BE⊥AE

又平面PAD⊥平面ABCD,交线为AD,

∴BE⊥平面PAD-----4分

(Ⅱ)取BC中点G,连结GE,GF.

则GF//PB,EG//AB,

∴平面EFG//平面PAB

∴EF//平面PAB------8分

(Ⅲ)∵AD∥BC ∴ AD∥平面PBC

∴A到平面PBC的距离等于E到平面PBC的距离.

由(1) AE⊥平面PBE

∴平面PBE⊥平面PBC

又平面PBE∩平面PBC=PB[

作EO⊥PB于O,则EO是E到平面PBC的距离.

且PE= ∴PB=2

∴ ----12分

20.解(Ⅰ)设,则,,

由得,,即轨迹的方程为.----4分

(Ⅱ)若直线的斜率为时,直线:,设,.

联立,得,

则 ,,观察得,,

即 ,

直线:,直线:,

联立:,

解之:;所以交点在直线:上,

若轴时,不妨得,,则此时,

直线:,直线:,

联立,解之,,

即交点也在直线:上.----12分

21.解:(Ⅰ)当时,,

对于[1,e],有,∴在区间[1,e]上为增函数,

∴,.-----4分

(Ⅱ)(x>0)

①当,即时,

,所以,在(0,+∞)是单调递增函数

故无极值点。

②当,即时

令,得(舍去)

当变化时,的变化情况如下表:

+ 0 -

由上表可知,时,

…………12分

四、选考题(从下列三道解答题中任选一道作答,作答时,请注明题号;若多做,则按着做题计入总分,满分10分,请将答题的过程写在答题卷中指定的位置)

22.证明:(Ⅰ) ∵CF=FG

∴∠GCF =∠CGF

∵AB是⊙O的直径

∴AC⊥BD 又CE⊥AB

∴∠GCF =∠ABC=∠CBD+∠GBA

又∠GCF=∠A+∠GBA

∴∠CBD=∠A

∴BC=CD 即C为的中点----6分

(Ⅱ)由(Ⅰ) ∠CBD=∠A=∠BCF

∴BF=CF 又CF=FG

∴BF=FG-------10分

23.解:(Ⅰ)由得,,两边同乘得,

,再由,,,得

曲线的直角坐标方程是;----5分

(Ⅱ)将直线参数方程代入圆方程得,,

,,

.------10分

24.解:(Ⅰ),令或,得,,

以,不等式的解集是.-------6分

(Ⅱ)在上递减,递增,所以,,

由于不等式的解集是非空的集合,所以,解之, 或,即实数的取值范围是.-----10分

近十年来的高考试卷 带答案 河南考卷 好像是全国卷1 数学,求能打印出来的。最好是word版的。谢谢了!

2018河南高考数学模拟试题(含答案)

一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)

2018河南高考数学模拟试题二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)

9.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是______cm3.

15.已知平面向量a,b,|a|=1,|b|=2,a·b=1.若e为平面单位向量,则|a·e|+|b·e|的最大值是______.

2018河南高考数学模拟试题三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)

16.(本题满分14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2acos B.

(Ⅰ)证明:A=2B;

18.(本题满分15分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.

(I)求证:BF⊥平面ACFD;

(II)求直线BD与平面ACFD所成角的余弦值.

(I)求p的值;

(II)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.

求文档: 2004全国高考数学立体几何题

高中文理综合合集百度网盘下载

链接:提取码:1234

简介:高中文理综合优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

河南高考数学试卷试题难不难,附试卷分析和解答

1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]

已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()

A.B.C.D.

2.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第16题,文科数学第16题]

已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是.

①两条平行直线②两条互相垂直的直线

③同一条直线④一条直线及其外一点

在一面结论中,正确结论的编号是(写出所有正确结论的编号).

3.[2004年全国高考(四川云南吉林黑龙江)文科数学第6题]

正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()

A.75°B.60°C.45°D.30°

4.[2004年全国高考(四川云南吉林黑龙江)理科数学第7题,文科数学第10题]

已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为,则

球心O到平面ABC的距离为()

A.B.C.D.

5.[2004年全国高考(四川云南吉林黑龙江)理科数学第16题,文科数学第16题]

下面是关于四棱柱的四个命题:

①若有两个侧面垂直于底面,则该四棱柱为直四棱柱

②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱

③若四个侧面两两全等,则该四棱柱为直四棱柱

④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱

其中,真命题的编号是(写出所有正确结论的编号).

6.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第9题,文科数学第10题]

正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()

A.B.C.D.

7.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第13题,文科数学第14题]

用平面截半径为的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为.

8.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第3题]

正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为()

A.B.C.D.

9.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第7题]

对于直线m、n和平面,下面命题中的真命题是()

A.如果、n是异面直线,那么

B.如果、n是异面直线,那么相交

C.如果、n共面,那么

D.如果、n共面,那么

10.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第11题]

已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平

面ABC的距离为()

A.1B.C.D.2

11.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第10题]

已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=,则球心

到平面ABC的距离为()

A.1B.C.D.2

12.(2004年北京高考·理工第3题,文史第3题)

设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,,则

②若,,,则

③若,,则

④若,,则

其中正确命题的序号是

A. ①和②B. ②和③C. ③和④D. ①和④

13.(2004年北京高考·理工第4题,文史第6题)

如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是

A. 直线B. 圆C. 双曲线D. 抛物线

14.(2004年北京高考·理工第11题,文史第12题)

某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,

表面积是______________cm2

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题,满分12分]

如图,已知四棱锥 P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.

(I)求点P到平面ABCD的距离;

(II)求面APB与面CPB所成二面角的大小.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题,满分12分]

如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.

(Ⅰ)求证CD⊥平面BDM;

(Ⅱ)求面B1BD与面CBD所成二面角的大小.

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题,满分12分]

三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,

(1)求证:AB ⊥ BC;

(2,理科)设AB=BC=,求AC与平面PBC所成角的大小.

(2,文科) 如果AB=BC=,求侧面PBC与侧面PAC所成二面角的大小.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题,本小题满分12分]

如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.

(Ⅰ)求四棱锥P—ABCD的体积;

(Ⅱ)证明PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:

(I)三棱柱的侧面展开图的对角线长

(II)该最短路线的长及的值

(III)平面与平面ABC所成二面角(锐角)的大小

20.(2004年北京高考·理工第16题,本小题满分14分)

如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:

(I)该三棱柱的侧面展开图的对角线长

(II)PC和NC的长

(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)

参考答案

1.A2.①②④3.C4.B5.②④6.C7.8.A9.C

10.A11.A12.A13.D14.

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题]

本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.

(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.

∵AD⊥PB,∴AD⊥OB,

∵PA=PD,∴OA=OD,

于是OB平分AD,点E为AD的中点,所以PE⊥AD.

由此知∠PEB为面PAD与面ABCD所成二面角的平面角,

∴∠PEB=120°,∠PEO=60°

由已知可求得PE=

∴PO=PE·sin60°=,

即点P到平面ABCD的距离为.

(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.

.连结AG.

又知由此得到:

所以

等于所求二面角的平面角,

于是

所以所求二面角的大小为.

解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=BC.

∵AD⊥PB,∴BC⊥PB,FG⊥PB,

∴∠AGF是所求二面角的平面角.

∵AD⊥面POB,∴AD⊥EG.

又∵PE=BE,∴EG⊥PB,且∠PEG=60°.

在Rt△PEG中,EG=PE·cos60°=.

在Rt△PEG中,EG=AD=1.

于是tan∠GAE==,

又∠AGF=π-∠GAE.

所以所求二面角的大小为π-arctan.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题]

本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.

满分12分.

解法一:(Ⅰ)如图,连结CA1、AC1、CM,则CA1=

∵CB=CA1=,∴△CBA1为等腰三角形,

又知D为其底边A1B的中点,

∴CD⊥A1B.∵A1C1=1,C1B1=,∴A1B1=

又BB1=1,A1B=2. ∵△A1CB为直角三角形,D为A1B的中点,

∴CD=A1B=1,CD=CC1,又DM=AC1=,DM=C1M.

∴△CDM≌△CC1M,∠CDM=∠CC1M=90°,即CD⊥DM.

因为A1B、DM为平在BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设F、G分别为BC、BD的中点,连结B1G、FG、B1F,则FG//CD,FG=CD.

∴FG=,FG⊥BD.

由侧面矩形BB1A1A的对角线的交点为D知BD=B1D=A1B=1,

所以△BB1D是边长为1的正三角形.

于是B1G⊥BD,B1G=∴∠B1GF是所求二面角的平面角,

又 B1F2=B1B2+BF2=1+(=,

即所求二面角的大小为

解法二:如图,以C为原点建立坐标系.

(Ⅰ)B(,0,0),B1(,1,0),A1(0,1,1),

D(,M(,1,0),

则∴CD⊥A1B,CD⊥DM.

因为A1B、DM为平面BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设BD中点为G,连结B1G,则

G(),、、),

所以所求的二面角等于

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题]

本小题主要考查两个平面垂直的性质、直线与平面所成角等有关知识,以及逻辑思维能力和空间想象能力.满分12分.

(Ⅰ)证明:如图1,取AC中点D,连结PD、BD.

因为PA=PC,所以PD⊥AC,又已知面PAC⊥面ABC,

所以PD⊥面ABC,D为垂足.

因为PA=PB=PC,所以DA=DB=DC,

可知AC为△ABC的外接圆直径,因此AB⊥BC.

(Ⅱ,理科)解:如图2,作CF⊥PB于F,连结AF、DF.

因为△PBC≌△PBA,所以AF⊥PB,AF=CF.

因此,PB⊥平面AFC,

所以面AFC⊥面PBC,交线是CF,

因此直线AC在平面PBC内的射影为直线CF,

∠ACF为AC与平面PBC所成的角.

在Rt△ABC中,AB=BC=2,所以BD=

在Rt△PDC中,DC=

在Rt△PDB中,

在Rt△FDC中,所以∠ACF=30°.

即AC与平面PBC所成角为30°.

(2,文科)解:因为AB=BC,D为AC中点,所以BD⊥AC.

又面PAC⊥面ABC,

所以BD⊥平面PAC,D为垂足.

作BE⊥PC于E,连结DE,

因为DE为BE在平面PAC内的射影,

所以DE⊥PC,∠BED为所求二面角的平面角.

在Rt△ABC中,AB=BC=,所以BD=.

在Rt△PDC中,PC=3,DC=,PD=,

所以

因此,在Rt△BDE中,,

所以侧面PBC与侧面PAC所成的二面角为60°.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题]

本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析

问题能力.满分12分

解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.

作PO⊥平面在ABCD,垂足为O,连结OE.

根据三垂线定理的逆定理得OE⊥AD,

所以∠PEO为侧面PAD与底面所成的二面角的平面角,

由已知条件可知∠PEO=60°,PE=6,

所以PO=3,四棱锥P—ABCD的体积

VP—ABCD=

(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因为所以PA⊥BD.

解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,

又知AD=4,AB=8,

所以Rt△AEO∽Rt△BAD.

得∠EAO=∠ABD.

所以∠EAO+∠ADF=90°

所以AF⊥BD.

因为直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形

其对角线长为

(II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为

(III)连接DB,,则DB就是平面与平面ABC的交线

在中

由三垂线定理得

就是平面与平面ABC所成二面角的平面角(锐角)

侧面是正方形

故平面与平面ABC所成的二面角(锐角)为

20.(2004年北京高考·理工第16题)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是一个长为9,宽为4的矩形,其对角线长为

(II)如图1,将侧面绕棱旋转使其与侧成在同一平面上,点P运动到点的位置,连接,则就是由点P沿棱柱侧面经过棱到点M的最短路线

设,则,在中,由勾股定理得

求得

(III)如图2,连结,则就是平面NMP与平面ABC的交线,作于H,又平面ABC,连结CH,由三垂线定理得,

就是平面NMP与平面ABC所成二面角的平面角(锐角)

在中,

在中,

故平面NMP与平面ABC所成二面角(锐角)的大小为

河南数学考的全国几卷

一、2022年河南高考数学试卷试题难不难

2022年河南高考数学试卷难度或加大,2022高考难度趋势曝光数学篇中国考试公布的2022年的高考命题导向给考生们的备考指明了方向。总体的目标,一是关注科技发展与进步,二是关注社会与经济发展,三是关注优秀传统文化。题型特点,一是举例问题灵活开放,考察考生想象能力,有多组正确答案,有多种解题方案可供选择,二是结构不良问题适度开放,考查考生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中重视培养数学核心素养,三是存在问题有序开放,考察考生的逻辑推理能力和运算求解题能力,再体现开放性的同时,也考查了考生思维的准确性与有序性。

二、河南高考数学答题注意事项和指南

1.充分利用测试前的5分钟时间,十分重要。

许多学生或家长不知道,根据大规模考试的要求,考试前五分钟是发考卷的时间,并且考生填写姓名,准考证号的时间。这五分钟虽然是不允许你做题目(其实你做了也没关系的,但是要遵守考场纪律),但是你可以阅读这些问题。很多考场现象告诉我们啊。许多的考生在第一个时间拿到试卷,都是直接看试卷的第一题了。这里,我对每个人的建议是,拿到试卷,不要急着去看第一题,这五分钟是制定整个答题战略的关键时刻。考卷没发下来之前,你是没有办法看到试题的,所以你拿到卷子,一定要好好的制作属于你的答题战略。

2.答题前,一定要仔细审题。

考试开始后,很多学生都喜欢立马就开始答题,想都不想。但要记住:考试的时候一定要细心,一定要慢。数学考试的试卷通常隐藏了很多难以解决看出来的条件。却又是解决问题的关键。,有些数据是你不了解的,或许就是解决问题的关键,又或者你误读了这个题目。如果你是在误读的基础上做的,你可能会觉得这个题目很容易啊,但是你这么做就是错的。因此,考试一定要小心,一定要将试题的意思全部弄明白了,再去做,这样也会简单很多啊。很多的同学害怕审题会耽误考试时间,其实真正拖延时间的是你盲目的去答题。等你将题目审完了,找到了了思路,你只需要编写这些步骤,并不费时间。

3.答题一定要一次到位,节约时间,不要多次修改。

我们有些同学,当他们遇到了自己会做的题目,或者自己看到过的题目,他们就会一位的求快,一点都不经过思考,认为题目很简单。所以草稿都不会用了。直接上笔就写了。只要参加过考试的同学都知道。数学试题上面的选择题和后面的大问题之间的差异还是非常大的,但得的分数是差不多的。有些考生很容易从后面认为得分高的答题开始做,并且认为后面的大问题得分是“更多的”。这是一个严重的误解。希望大家参加考试的时候,一定要养成在正确的时间做到一次就正确的习惯。不要指望在最后检查中还能发现问题,来修改。考试越重要,你需要检查的时间就越少,因为问题越困难,就越有可能陷入困境。当你抬头看时,时间就已经不多了。所以你一定要仔细一点,答题时,一定要一次做对,先易后难。不要在一个困难题目上纠结太久。那样时间肯定是不够的,这样你会的题目也没时间做了,难题也没有做出来。赔了夫人又折兵。

河南2023年高考数学难不难

河南数学考的全国Ⅰ卷。

拓展知识:

在高考中,数学是全国统一命题的科目之一,而河南高考数学使用的是全国Ⅰ卷。全国Ⅰ卷是一种比较难的数学试卷,考查的知识点涵盖了高中数学的基本知识和技能,包括代数、几何、概率统计等方面。

河南高考数学的特点和优势有很多。首先,河南高考数学的难度相对较高,考查的知识点比较深入,需要学生具备较强的数学思维和解题能力。

其次,河南高考数学的出题比较稳定,规律性较强,学生可以通过分析和总结历年真题来掌握一些常见的考点和题型。此外,河南高考数学还注重考查学生的数学应用能力和实际问题解决能力,要求学生能够运用数学知识解决实际问题。

河南高考数学与其他地区的数学差异主要表现在难度和考查重点上。河南高考数学在全国Ⅰ卷的基础上,还增加了一些较难的题目和更为深入的知识点,考查的广度和深度都比较大。此外,河南高考数学还注重考查学生的数学应用能力和实际问题解决能力,而其他地区的数学试卷则可能更注重考查学生的基本知识和技能。

在写作中需要注意语言表达和逻辑性。文章要清晰地表达出主题和观点,使用简洁明了的语言和准确的术语。

同时,文章还需要有逻辑性,结构清晰,论述合理,避免出现重复和矛盾的情况。在描述河南高考数学的特点和优势时,可以结合具体的例子来说明,让读者更加深入地了解这一科目。

总的来说,河南高考数学是全国Ⅰ卷,难度较大,考查范围广,注重考查学生的数学思维和实际问题解决能力。

对于想要参加高考的河南考生来说,数学是一个需要认真学习和备考的科目。而对于其他人来说,了解河南高考数学的特点和优势也有助于更好地了解河南的高考制度和教育情况。

河南2023年高考数学难。

1、试卷难度解析

从往年高考数学难度来看,河南省一直走的是偏易路线。但是今年的数学试卷却让不少考生感到难度较大。具体来说,今年高考数学试卷难度较上一年有所增加,主要体现在试卷的题型和难度上。

比如选择题部分,今年的题目相对来说更加综合和考查性,需要考生有较强的综合应用能力。而大题部分,难度也有所提升,需要考生具备更高的解题能力和思维能力。

2、试卷内容分析

2023年河南省高考理科数学试题继续使用全国乙卷,全面聚焦并考察数学抽象、逻辑思维、直观想象、数学运算和数据分析等核心素养,注重发挥数学学科在人才选拔中的重要作用;体现综合性、应用性和创新性的考察要求,突出理性思维。

设问更具开放性与探索性,更能体现数学从特殊到一般的推理思想;反套路、反机械刷题,突出对基础知识和基本概念的深入理解和灵活掌握。

高考数学答题技巧:

1、理清题意

在做数学题之前,一定要认真阅读、理解题目要求,梳理思路,不要心急、粗心大意,以免出现偏差。

2、制定解题计划

在开始答题之前,可先制定一个简单的解题计划,确定答题的方法和步骤,避免盲目做题或耗费太多的时间。

3、稳扎稳打

做数学题时,需要有耐心、有毅力,认真思考,逐步推进。不能因为看起来难度较大而放弃,也不能因为看起来简单而粗心大意。

4、设计备选方案

有些数学题目可能有多种解答方法,考生需要根据自己的数学基础和答题经验制定备选方案,选择适合自己的解题思路,提升答题的效率和准确率。

5、审题核算

在解题过程中,考生需要认真审题、核算,避免遗漏或计算错误。特别是在最后核对答案时,要认真仔细,反复检查,确保答案的准确性。

文章标签: # 数学 # 平面 # 高考