您现在的位置是: 首页 > 志愿填报 志愿填报

高中量子物理学史_高考量子物理

tamoadmin 2024-06-01 人已围观

简介1.高中量子力学什么时候学2.量子悬浮的物理原理及应用3.量子力学的基本原理量子理论即一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。在牛顿力学(或者叫经典力学)体系中,能量的吸收和释放是连续的,物质可以吸收任意大小的能量。后来发现,其实能量真实的吸收和释放,只能够以某个的量级(hv)为最小单位,一份一份的吸收和释放,h也就是量子力学里最常用到的普朗克常数

1.高中量子力学什么时候学

2.量子悬浮的物理原理及应用

3.量子力学的基本原理

高中量子物理学史_高考量子物理

量子理论即一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。

在牛顿力学(或者叫经典力学)体系中,能量的吸收和释放是连续的,物质可以吸收任意大小的能量。

后来发现,其实能量真实的吸收和释放,只能够以某个的量级(hv)为最小单位,一份一份的吸收和释放,h也就是量子力学里最常用到的普朗克常数,v为电磁频率。

由于普朗克常数的数量级很小(10的-34次方数量级),这就导致了牛顿力学在大尺度上和实验符合良好,但在小尺度上偏差很大。

所以薛定谔在普朗克的量子理论(能量一份一份的传递)体系上建立了薛定谔方程,从而开辟了量子力学的伊始。

扩展资料:

薛定谔的量子理论

奥地利著名物理学家薛定谔提出了一个广为人知的量子力学思维实验,意图从宏观角度阐明微观尺度的量子叠加原理,帮助人们形象理解。

理想实验中这样假设,有一只猫和装有放射性物质的瓶子同在一个盒子内,有50%的可能放射性物质会发生衰变产生毒气,此时猫咪就会被毒气毒死,也有50%的可能性放射性物质不衰变,猫咪不会死亡。

不考虑任何其他因素对这个系统产生干扰,猫咪的存活与否仅仅与放射性物质是否衰变有关。

而任何在盒子外的人,在不打开盒子观察的情况下,是不知道猫咪的生死情况的。猫有50%的可能性活着,也有50%的可能性死去。

在同一时间,同一地点下,这种生死叠加态对于盒子外的人来说,是并存的。

百度百科——量子

百度百科——量子理论

科普中国网——理解量子

高中量子力学什么时候学

高中没有量子物理吧。。

双缝干涉是波里的,会细讲;尺缩是相对论内容,只会大概讲一个现象,不会涉及原理(因为除了专门研究的物理学家,大概没几个人能懂,更别提应用了=-=);薛定谔的猫倒是量子里的,但只会阐述一下悖论内容。实际高中教材里的相对论与量子物理内容都只是对目前物理学研究方向的概括,让有兴趣的人可以在未来做更细化的选择。

而且,量子物理本身就只是一种物理学研究的方法,并不是一个确切的、已被学术界证实并实用的领域;其公认性以及可靠性甚至远不及相对论。。。所以基本不会在高中出现。

如果你对这样有更深的兴趣,将来大学可以考虑理学院的物理专业。

高中的话大概要找一些课外的文献来读了。

量子悬浮的物理原理及应用

不学。高中的物理课本中是没有量子力学相关知识的,所以不进行学习,是在大学中才会学习的。量子力学(QuantumMechanics),为物理学理论,是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。它与相对论一起构成现代物理学的理论基础。

量子力学的基本原理

最近互联网上不时传播着一种称为“量子悬浮”的东西。这到底是什么呢?它是如何工作的?利用量子悬浮是否可以研发飞行的 汽车 ? 所谓的量子悬浮是科学家利用量子物理学的性质,在电磁源(特别是为此目的设计的量子悬浮轨道)上使物体(特别是超导体)悬浮的过程。

量子悬浮科学

起作用的原因是所谓的迈斯纳效应和磁通钉扎效应。迈斯纳效应表明,磁场中的超导体将始终将其内部的磁场排出,从而使周围的磁场弯曲。问题是如何做到平衡的?因为若只是将超导体放在磁体顶部,那么该超导体就会从磁体上浮下来,有点像试图使条形磁体的两个南磁极相互平衡。

量子悬浮过程通过磁通钉扎或量子锁定过程变得更加有趣,正如特拉维夫大学超导体小组描述的这样:

超导性和磁场互不相容,如果可能,超导体将从内部驱除所有磁场。这就是迈斯纳效应。在理想的情况下,由于超导体非常薄,所以磁场确实会穿透超导体。但是,它做到的是离散量(量子物理学,总是一份一份),称为通量管。在每个磁通量管内部均会局部破坏超导性。超导体将尝试将磁管固定在薄弱区域(例如晶界)中,之后超导体的任何空间运动都会导致通量管运动。

迈斯纳效应

让我们考虑一下真正的超导体:它是一种电子能够在其中非常容易流动的材料。电子流过没有电阻的超导体,当磁场接近超导材料时,超导体会在其表面形成小电流,从而抵消入射的磁场,结果导致超导体表面下的磁场强度恰好为零。如果你尝试绘制净磁场线,则会发现它们在物体周围发生弯曲。

那么,悬浮是如何实现的?

当将超导体放在磁道上时,其作用是使超导体保持在磁道上方,实质上是被磁道表面上的强磁场推开的。当然,由于磁斥力必须抵消重力,因此可以将其有限度地推到轨道上方。

I型超导体磁盘将在其最极端的模型中表现出迈斯纳效应,这被称为“完美反磁性”,并且在材料内部将不包含任何磁场。因为它试图避免与磁场的任何接触,所以它会悬浮。但问题是这种悬浮不会稳定,导致悬浮物体通常不会留在原地。(相同的过程已经能够使超导体悬浮在一个碗形的凹形铅磁铁中,在该磁铁中,磁性在所有方向上均等地推动。)

所以为了有用,悬浮需要更加稳定。那就是量子锁定起作用的地方。

磁通管

量子锁定过程的关键要素之一是这些通量管的存在,称为“涡旋”。如果超导体非常薄,或者如果超导体是II型超导体,则它花费较少的超导能量来允许某些磁场穿透该超导体。这就是为什么在磁场实际上能够“滑过”超导体的区域形成磁通涡流的原因。

在上面的特拉维夫团队所描述的情况下,他们能够在晶圆表面上生长特殊的陶瓷薄膜。冷却后,这种陶瓷材料是II型超导体。因为太薄了,所以显示出来的反磁性并不是完美的,即允许通过材料的这些磁通涡流存在。即使超导体材料不太薄,磁通涡流也可以在II型超导体中形成。可以将II型超导体设计为增强的效果,称为“增强型磁通钉扎”。

量子锁

当磁场以通量管的形式渗透到超导体中时,它实际上会在该狭窄区域关闭超导体。将每个管子想象成超导体中间的一个微小的非超导体区域。如果超导体移动,通量涡旋将移动。但是请记住两件事:

1. 通量涡旋是磁场

2. 超导体将产生电流以抵抗磁场(即迈斯纳效应)

非常规超导体的材料本身会产生一种力来抑制任何与磁场有关的运动。例如,如果倾斜超导体,则将其“锁定”或“捕获”到该位置。它会以相同的倾斜角度绕过整个轨道。通过高度和方向将超导体锁定在适当位置的过程可减少任何不希望的摆动。您可以在磁场中重新定向超导体,因为您的手所施加的力和能量远远大于磁场所施加的力和能量。

其他类型的量子悬浮

上面描述的量子悬浮过程基于磁斥力,但是有人还提出了其他一些量子悬浮方法,包括一些基于卡西米尔效应的方法。同样,这涉及到对材料电磁特性的某种奇怪的操纵,因此它的实用性还有待考察。

量子悬浮的未来

不幸的是,目前这种磁排斥的强度使得我们将在相当长的一段时间内不会有飞行的 汽车 。而且,它只能在强磁场下工作,这意味着我们需要建造新的磁道。但是,除了更传统的电磁悬浮列车(磁悬浮列车),亚洲已经有使用这种方法的磁悬浮列车。另一个有用的应用是研发真正的无摩擦轴承。轴承仍旧可以旋转,但无需与周围外壳直接物理接触即可悬挂,这样就不会产生任何摩擦,大大减少能量消耗。

量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。

在量子力学中,一个物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。 (一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。

根据狄拉克符号表示,状态函数,用<Ψ|和|Ψ>表示,状态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。

状态函数可以表示为展开在正交空间集里的态矢比如 ,其中|i>为彼此正交的空间基矢, 为狄拉克函数,满足正交归一性质。 态函数满足薛定谔波动方程, ,分离变数后就能得到不显含时状态下的演化方程 ,En是能量本征值,H是哈密顿算子。

于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

体系状态

在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;另一种是测量改变体系状态的不可逆变化。因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。

据此,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。

微观体系

20世纪70年代以来,关于远隔粒子关联的实验表明,类空分离的事件存在着量子力学预言的关联。这种关联是同狭义相对论关于客体之间只能以不大于光速的速度传递物理相互作用的观点相矛盾的。于是,有些物理学家和哲学家为了解释这种关联的存在,提出在量子世界存在一种全局因果性或整体因果性,这种不同于建立在狭义相对论基础上的局域因果性,可以从整体上同时决定相关体系的行为。

量子力学用量子态的概念表征微观体系状态,深化了人们对物理实在的理解。微观体系的性质总是在它们与其他体系,特别是观察仪器的相互作用中表现出来。

人们对观察结果用经典物理学语言描述时,发现微观体系在不同的条件下,或主要表现为波动图象,或主要表现为粒子行为。而量子态的概念所表达的,则是微观体系与仪器相互作用而产生的表现为波或粒子的可 能性。 量子力学表明,微观物理实在性既不是波也不是粒子,真正的实在性是量子态。真实状态分解为隐态和显态,它是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离 . 不确定性指经济行为者在事先不能准确地知道自己的某种决策的结果。或者说,只要经济行为者的一种决策的可能结果不止一种,就会产生不确定性。

不确定性也指量子力学中量子运动的不确定性。由于观测对某些量的干扰,使得与它关联的量(共轭量)不准确,这是不确定性的起源,这种不确定性为客观不确定性。

在量子力学中,不确定性指测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量就有可能得到不同的值,即会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。

在经典物理学中,可以用质点的位置和动量精确地描述它的运动。同时知道了加速度,甚至可以预言质点接下来任意时刻的位置和动量,从而描绘出轨迹。在微观物理学中,不确定性告诉我们,如果要更准确地测量质点的位置,那么测得的动量就更不准确。也就是说,不可能同时准确地测得一个粒子的位置和动量,因而也就不能用轨迹来描述粒子的运动,这就是不确定性原理的具体解释。 由于从原则上,无法彻底确定一个量子物理系统的状态,因此在量子力学中内在特性(比如质量、电荷等)完全相同的粒子之间的区分,失去了其意义。在经典力学中,每个粒子的位置和动量,全部是完全可知的,它们的轨迹可以被预言。通过一个测量,可以确定每一个粒子。在量子力学中,每个粒子的位置和动量是由波函数表达,因此,当几个粒子的波函数互相重叠时,给每个粒子“挂上一个标签”的做法失去了其意义。

这个全同粒子(identical particles) 的不可区分性,对状态的对称性,以及多粒子系统的统计力学,有深远的影响。比如说,一个由全同粒子组成的多粒子系统的状态,在交换两个粒子“1”和粒子“2”时,我们可以证明,不是对称的,即是反对称的。对称状态的粒子是被称为玻色子,反对称状态的粒子是被称为费米子。此外自旋的对换也形成对称:自旋为半数的粒子(如电子、质子和中子)是反对称的,因此是费米子;自旋为整数的粒子(如光子)是对称的,因此是玻色子。

这个深奥的粒子的自旋、对称和统计学之间关系,只有通过相对论量子场论才能导出,它也影响到了非相对论量子力学中的现象。费米子的反对称性的一个结果是泡利不相容原理,即两个费米子无法占据同一状态。这个原理拥有极大的实用意义。它表示在我们的由原子组成的物质世界里,电子无法同时占据同一状态,因此在最低状态被占据后,下一个电子必须占据次低的状态,直到所有的状态均被满足为止。这个现象决定了物质的物理和化学特性。

费米子与玻色子的状态的热分布也相差很大:玻色子遵循玻色-爱因斯坦统计,而费米子则遵循费米-狄拉克统计。

文章标签: # 超导体 # 量子 # 状态