您现在的位置是: 首页 > 志愿填报 志愿填报

高考文科导数题型总结,文科高考数学导数

tamoadmin 2024-05-30 人已围观

简介1.高考数学题 关于导数的 请写出思路我认为高考导数比较难。高考数学导数是我们高考的必考内容,而且考点占比很多,想要都吃透并没有那么容易,但是题型无论怎么变,其实都万变不离其宗,都是有它固定的解题模板的。掌握到一类题型的解题规律,其实很重要,为什么说导数比较难呢,因为它常常和函数的知识联系到一起,也总是一起去考,所以,导数题型的综合能力就比较强。可以根据以下查看自己所不会的;1、单调性问题研究函数

1.高考数学题 关于导数的 请写出思路

高考文科导数题型总结,文科高考数学导数

我认为高考导数比较难。高考数学导数是我们高考的必考内容,而且考点占比很多,想要都吃透并没有那么容易,但是题型无论怎么变,其实都万变不离其宗,都是有它固定的解题模板的。

掌握到一类题型的解题规律,其实很重要,为什么说导数比较难呢,因为它常常和函数的知识联系到一起,也总是一起去考,所以,导数题型的综合能力就比较强。

可以根据以下查看自己所不会的;

1、单调性问题

研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。

2、分离参数构造法

分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题。

3、利用导数研究切线问题

关键是要有切点横坐标,以及利用三句话来列式。具体来说,题目必须出现切点横坐标,如果没有切点坐标,必须自设切点坐标。然后,利用三句话来列式:①切点在切线上;②切点在曲线上;③斜率等于导数。用这三句话,百分之百可以解答全部切线问题。

4、导数在函数极值中的应用

利用导数的知识来求函数极值是高中数学问题比较常见的类型。利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,最后再求出函数的极值。

高考数学题 关于导数的 请写出思路

高考文科数学大题里,解析几何和导数相比较当然是解析几何比较难了。

高中解析几何已经是学习的相当深入,用代数方法解决几何问题本来就有点综合学科的意思,题目可以无限难,方法不对甚至无法开始,导致全部分数扣光。

而高中导数是原来高等数学下放下来的,算是微积分的初步知识,从要求上来说就比较初级,掌握基本的公式和解题思路,通常错误也就是计算错误,只要公式没有用错,通常还是能得一些分的。

思考第三问我们要看图像,由(1),(2)问易得:f(x)的极大值点和极小值点分别为:A(-k,4k^2/e), B(k,0),且在<-k 和>k上单调递增,在-k到k上单调递减。于是很自然的(你要自己画一个图,问交点的问题通常要通过图形来辅助思考)一定有一个区间L(比如(-k/2,k/2)或者[a,b]之类的开集、闭集、左开右闭或左闭右开的集合)使得当m?L时,f(x)与y=m有三个不同的交点。

这时我们知道在[-k,k]上,f(x)与y=m一定有一个交点,这样我们只需考虑在x>k和x< -k上f(x)与y=m何时有交点。

x>k时。由于f(x)连续且f(x)在k>=0上的极小值就等于0,因此只需考虑f(x)在k>0上的最大值。f(x)在k>0上单调递增,若对于t是一个实数,若存在x>k使得f(x)=t,则对于任意的0<y0<t, 都存在x0使得:f(x0)=y0。(这件事你看图就能明白,要证明需要大学知识,你能理解就好)。于是我们如果找到一个很大的x, 使得f(x)>4k^2/e, 则说明当m<=4k^2/e时,f(x)与y=m在x>k上必有交点。

于是,我们总能取到一个正整数N,使得:N>2k(只要在数轴上一个一个的数下去,这件事是办得到的,因为2k与2k+1是一个有限的数),令x=N, 于是:

f(x)=(N-k)^2 e^(N/k)

>k^2 e^2

>4k^2

>4k^2/e.

这样我们知道,只要0<m<=4k^2/e, 则f(x)与y=m在x>k上就有交点。

x<-k。易知0<f(x)<4k^2/e。现在只需考虑是否存在t>0使得在x< -k上,f(x)>=t总成立。同样的我们知道:在x< -k上,对于0<a<b, 若存在x1,x2< -k, f(x1)=a, f(x2)=b, 则对于任意的y0:a<y0<b, 必存在x0使得:f(x)=y0。于是对于任意的正数t,一定存在正整数N使得:1/N<t(实际上就是:N>1/t, 这也是可以做到的).

此时遇到问题:当x趋近于负无穷时,(x-k)^2趋近于正无穷,e^(x/k)趋近于0, 则它们相乘要趋近于什么呢?由于f(x)=(x-k)^2 e^(x/k)=(x-k)^2/(e(-x/k)), 那我们就考虑g=|(x-k)^2|=(x-k)^2与h=|e(-x/k)|的大小就好了。

针对于这道题的情况我们可以考察这样一件事:对于任意的正整数n, 存在一个正数x0,对于任意的x>n, e^x>x^n。(可以对n用数学归纳法)。

于是我们得到:存在x0>k>0, 当x<-x0<-k时:

|f(x)|=|(x-k)^2 e^(x/k)|

=|(x-k)^2/x^3|*|x^3/e(-x/k)|

<|(x-k)^2/x^3| -->0, x趋近于负无穷时。

从而我们知道:当0<m<4k^2/e时,在x<-k上,f(x)与y=m必有交点。

综上:若要f(x)与y=m必有3个交点则:0<m<4k^2/e

思路:找到极大值点、极小值点、升降区间,画图,比较,再分析得到结论。

文章标签: # lt # gt # 导数