您现在的位置是: 首页 > 志愿填报 志愿填报

高考数学2014数列_2014年高考数学满分多少

tamoadmin 2024-05-25 人已围观

简介1.高中数学数列(高考题)2.高考数列题型及解题方法3.2014安徽高考数学试卷:理数(文字版)4.高中数学解数列问题有哪些常用方法高考的数学考点有:1、数列&解三角形数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来,2014、2015年大题第一题考查的是数列,2016年大题第一题考查的是解三角形,故预计2017年大题第一题较大可能仍然

1.高中数学数列(高考题)

2.高考数列题型及解题方法

3.2014安徽高考数学试卷:理数(文字版)

4.高中数学解数列问题有哪些常用方法

高考数学2014数列_2014年高考数学满分多少

高考的数学考点有:

1、数列&解三角形

数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来,2014、2015年大题第一题考查的是数列,2016年大题第一题考查的是解三角形,故预计2017年大题第一题较大可能仍然考查解三角形。

数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。

2、立体几何

高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。

3、概率

高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。

4、解析几何

高考在第20题的位置考查一道解析几何题。主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

5、导数

高考在第21题的位置考查一道导数题。主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的最后一题。

高中数学数列(高考题)

 数列是高中数学的重要内容,又是学习高等数学的基础。高考对数列的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。下面是我为大家整理的关于高中数学数列 方法 和技巧,希望对您有所帮助。欢迎大家阅读参考学习!

1高中数学数列方法和技巧

 一.公式法

 如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.

 二.倒序相加法

 如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.

 三.错位相减法

 如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.

 四.裂项相消法

 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.

 五.分组求和法

 若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.

2高中数学数列问题的答题技巧

 高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

 题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

 题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。

 对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法

 对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

 总之,每次碰到一道陌生的数列题,要进行 总结 ,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

3高考数学解题方法

 解题过程要规范

 高考数学计算题要保证既对且全,全而规范。应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

 解决高考数学计算题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,高考数学计算题解题过程和结果都不能离开实际背景。

 先熟后生

 高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。这样,在拿下数学熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

4高中生学好数学的诀窍

 首先、准备好 笔记本 和草稿本,笔记本不是让你记公式记概念,那些东西书上都有,没必要再誊一遍到笔记本上,笔记本上主要记老师给的例题。毕竟老师是很有 经验 的,他们给的例题一定是很有代表性的,必要的时候可以背一背例题的解题方法,理解思路。

 草稿本就是有些不是很重要的题,老师让举一反三这类的东西,就没必要写在笔记上,但是一定要跟着算,在纸上写两笔算一下绝对比你光看光想的效果要好得多。

 其次、上课一定集中注意力,要和老师有一定的互动,时间长了,上课百分之九十的时间老师都是在看着你讲课,你不点头表示明白了她就不往下讲。。毕竟一节课四十分钟,一个老师一节课平均分给每个学生也就不到一分钟,所以自私点说,就是要给自己争取时间。

 课下有问题就问,最好不要问同学,尤其是以为脑子很聪明所以数学学的好的同学,这种人千万别问,倒不是说人家不愿意给你讲,而是现在毕竟是应试 教育 ,那些聪明的同学上课不一定听讲有多认真,有些人做题就是根据自己的思路走,那些解题方法可能适合于他们并不适合你,所以问题一定找老师,老师会给你一套最适合应试的解题方法。

高中数学数列方法和技巧相关 文章 :

1. 高中数学的100个学习方法与高中数学48条秒杀的公式

2. 高中数学学习方法和技巧是什么

3. 高中数学学习的方法技巧

4. 高中数学数列通项公式的求法

5. 高中数学六种解题技巧与五种数学答题思路

6. 高二数学学习方法和技巧大全

7. 高中数学50个解题小技巧

8. 高中数学学习方法及策略

9. 高中数学学习方法总结

高考数列题型及解题方法

A<2>-A<1>=c-1-1>0所以c>2

令t=A<n

1>=A<n>解得t=(c±√(c^2-4))/2求出两个可能的收敛点只需证明(c-√(c^2-4))/2<A<n><=(c

√(c^2-4))/2即数列取值在两个可能收敛点之间

1.用数学归纳法,当(c-√(c^2-4))/2<A<n>时A<n

1>-(c-√(c^2-4))/2=(c

√(c^2-4))/2-1/A<n>>0所以A<n>>(c-√(c^2-4))/2>0

2.A<n

1>-A<n>=-A<n>

A<n-1>=(A<n>-A<n-1>)/(A<n>A<n-1>)A<2>-A<1>>0,推出A<3>-A<2>>0,……,A<n

1>-A<n>>0

3.当A<n><(c

√(c^2-4))/2时A<n

1>-(c

√(c^2-4))/2=(c-√(c^2-4))/2-1/A<n><0所以A<n><(c

√(c^2-4))/2

要满足条件,已知c>2,A<n><A<n

1>自然满足要使A<n

1><3,又A<n><(c

√(c^2-4))/2(c

√(c^2-4))/2<3解得2<c<10/3

2014安徽高考数学试卷:理数(文字版)

高考数列题型及解题方法如下:

1、高考数学选择题部分答题技巧。

高考数学的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结银饥谈出题目的出题策略时,答题就变得很简单了。

比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破。但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可锋碰以理解,但自己遇到新的题目任然无从下手。

2、高考数学关于大题方面答题技巧。

高考数学基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。对于较难的原则曲线和导数两道题目基本要拿一半的分数。

考生复习时可把数学大题的每一道题作为一个独立的版块音节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接肢猜秒刷的题目的。

2023高考数学答题窍门。

跳步答题:

高考数学解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向:如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于高考数学考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。

也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持券面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

极限思想解题步骤:

极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量:二、确认这变量通过无限过程的结果就是所求的未知量:三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

高中数学解数列问题有哪些常用方法

8.从正方体六个面的对角线中任取两条作为一对,学科网其中所成的角为 的共有( )

A.24对 B.30对 C.48对 D.60对

9.若函数 的最小值为3,则实数 的值为( )

A.5或8 B. 或5 C. 或 D. 或8

10.在平面直角坐标系 中,已知向量 点 满足 .曲线 ,区域zxxk .若 为两段分离的曲线,则( )

A. B. C. D.

第 卷(非选择题 共100分)

二.选择题:本大题共5小题,每小题5分,共25分.

11.若将函数 的图像向右平移 个单位,所得图像关于 轴对称, 则 的最小正值是________.

12.数列 是等差数列,若 , , 构成学科网公比为 的等比数列,则

________.

(13)设 是大于1的自然数, 的展开式为 .若点 的位置如图所示,则

(14)设 分别是椭圆 的左、右焦点,过点 的直线交椭圆 于 两点,若 轴,则椭圆 的方程为__________

(15)已知两个不相等的非零向量 两组向量 和 均由2个 和3个 排列而成.记 ,学科网 表示 所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号).

① 有5个不同的值.

②若 则 与 无关.

③若 则 与 无关.

④若 ,则 .学科网

⑤若 则 与 的夹角为

三.解答题:本大题共6小题,共75分.解答应写出文子说明、证明学科网过程或演算步骤.解答写在答题卡上的指定区域内.

16.设 的内角 所对边的长分别是 ,且

(1)求 的值;

(2)求 的值.

17(本小题满分12分)

甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为 ,乙获胜的概率为 ,各局比赛结果相互独立.

(1)求甲在4局以内(含4局)赢得比赛的概率;

(2)记 为比赛决出胜负时的总局数,求 的分布列和均值(数学期望)

18(本小题满分12分)

设函数 其中 .

(1)讨论 在其定义域上的单调性;

(2)当 时,求 取得值和最小值时的 的值.

(19)(本小题满分13分)

如图,已知两条抛物线 和 ,过原点 的两条直线 和 , 与 分别交于 两点, 与 分别交于 两点.

(1)证明:

(2)过原点 作直线 (异于 , )与 分别交于 两点。记学科网 与 的面积分别为 与 ,求 的值.

(20)(本题满分13分)

如图,四棱柱 中, 底面 .四边形 为梯形, ,且 .过 三点的平面记为 , 与 的交点为 .

(1)证明: 为 的中点;

(2)求此四棱柱被平面 所分成上下两部分的体积之比;

(3)若 , ,梯形学科网 的面积为6,求平面 与底面 所成二面角大小.

(21) (本小题满分13分)

设实数 ,整数 , .

(I)证明:当 且 时, ;

(II)数列 满足 , ,证明:学科网

数列问题解题方法技巧

1.判断和证明数列是等差(等比)数列常有三种方法:

(1)定义法:对于n≥2的任意自然数,验证 为同一常数。

(2)通项公式法:

①若 = +(n-1)d= +(n-k)d ,则 为等差数列;

②若 ,则 为等比数列。

(3)中项公式法:验证中项公式成立。

2. 在等差数列 中,有关 的最值问题——常用邻项变号法求解:

(1)当 >0,d<0时,满足 的项数m使得 取最大值.

(2)当 <0,d>0时,满足 的项数m使得取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。

三、数列问题解题注意事项

1.证明数列 是等差或等比数列常用定义,即通过证明 或 而得。

2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。

3.注意 与 之间关系的转化。如:

= , = .

4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.

5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.原文链接:

文章标签: # 数列 # lt # gt