您现在的位置是: 首页 > 教育改革 教育改革

2014高考数学试题,2014高考数学17题

tamoadmin 2024-05-17 人已围观

简介15.(本小题满分14分)在 中,已知 .(1)求证: ;(2)若 求A的值.16.(本小题满分14分)F如图,在直三棱柱 中, , 分别是棱 上的点(点D 不同于点C),且 为 的中点.E求证:(1)平面 平面 ;[来源:学§科§网](2)直线 平面ADE.(第16题)DCAB17.(本小题满分14分)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐

2014高考数学试题,2014高考数学17题

15.(本小题满分14分)

在 中,已知 .

(1)求证: ;

(2)若 求A的值.

16.(本小题满分14分)

F

如图,在直三棱柱 中, , 分别是棱 上的点(点D 不同于点C),且 为 的中点.

E

求证:(1)平面 平面 ;[来源:学§科§网]

(2)直线 平面ADE.

(第16题)

D

C

A

B

17.(本小题满分14分)

如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程 表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.

(1)求炮的最大射程;

(2)设在 第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.[来源:学+科+网Z+X+X+K][来源:Zxxk.Com]

x(千米)

y(千米)

O

(第17题)

18.(本小题满分16分 )

已知a,b是实数,1和 是函数 的两个极值点.

(1)求a和b的值;

(2)设函数 的导函数 ,求 的极值点;

(3)设 ,其中 ,求函数 的零点个数.

19.(本小题满分 16分)

A

B

P

O

x

y

(第19题)

如图,在平面直角坐标系x Oy中,椭圆 的左、右焦点分别为 , .已知 和 都在椭圆上,其中e为椭圆的离心率.

(1)求椭圆的离心率;

(2)设A,B是椭圆上位于x轴上方的两点,且直线

与直线 平行, 与 交于点P.

(i)若 ,求直线 的斜率;

(ii)求证: 是定值.

20.(本小题满分16分)

已知各项均为正数的两个数列 和 满足: .

(1)设 ,求证:数列 是 等差数列;

(2)设 ,且 是等比数列,求 和 的值.

2012年的高考的大体形式就是这样,每年都差不多

相比2014课标全国I卷的数学试题,本次高考数学试题的难度变化不大,理科数学难度有所下降,考察内容方面注重基础的考察,知识覆盖全面,重点突出,传统高考中突出考察的“三角函数”、“数列与不等式”、“立体几何”、“概率统计”、“解析几何”、“函数与导数”六大板块依旧是考察的重点,且难度适当,依然体现了“以学生为本”“在基础中考察能力”的要求。与此同时,今年高考在考察方式上有所创新,理科数学第8题,第9题,第14题,第18题,第24题,文科数学第8题,第14题,第24题均运用了与历年课标全国卷考法有所区别的考法。

下面就部分较有特色的题目作个别分析。

理科数学第3题,文科数学第5题考察函数的奇偶性,非常的基础,回归课本,类似的题目在高考中出现过多次如2006年辽宁卷理科数学第2题,文科数学第3题等。

理科数学第8题,考察三角函数恒等变换,运用特殊值法令 α=π/3,β= π/6 可以秒杀。

理科数学第9题,将线性规划问题与简易逻辑结合在一起考察,难度不大但有新意。

理科数学第11题,文科数学第12题,考察函数的单调性,注意到函数图像的形状即可,考察方式非常传统,难度较历年选择压轴题有所下降。

理科数学第14题及文科数学第14题,考察逻辑推理,难度很小,在高考的考察方式中是一道新颖的小题。

理科数学第17题如我们所料在连续两年考察解三角形后考察了数列,题目形式较新,难度依然不大,通过作差可轻松得到答案。文科第17题考察错位相减法为数列的传统考法,注意计算准确即可。

理科数学第18题综合考察了统计与正态分布的知识,将正态分布的考察从选择填空转移到了解答题,但并没有增加难度,文科数学第18题综合考察了统计与统计案例,也是一道不错的考题。

在解析几何的考察上,文理科试卷都延续了减少计算量的趋势,且考查方式非常传统,理科数学第20题中出现的标志“三角形OPQ的面积”及文科数学第20题中出现的标志“三角形OPM的面积”几乎为高三考生平常训练中必做的题目类型。

理科数学第21题作为压轴题第一问考察基础的切线问题,第二问则是典型的不含参数恒成立问题的证明,在我们的课上曾经多次讲过对于不含参的恒成立问题,左边的最小值大于等于右边的最大值为一个有效的方法,本题经过变形将左边变为xlnx,再直接利用方法即可得到正确的证明。实际上本题脱胎自课本上xlnx的求导。

而同时,理科数学的压轴题与以下这道成题x∈(0,+∞)证明时, e^x lnx≥ 1-2e^x-1/x(e^x表示e的x次方)做简单的移项变形后可以说完全一样。这道成题我们曾在课堂上进行过讲解,题目也曾变形的出现在各类考试中,如本地的唐山一中2011年高三期中考试就曾用此题作为21题的第二问,进行过训练的高三考生应该可以拿下。

总体而言,2015年的高考数学课标全国I卷难度适当,考察方式有所创新,内容与部分题型更加注重回归基础及传统,对考生而言,严格以“课本”与“真题”为材料进行复习,才是正途。

文章标签: # 数学 # 考察 # 理科