您现在的位置是: 首页 > 教育改革 教育改革

分数线数学符号-分数线符号的意义

tamoadmin 2024-09-06 人已围观

简介1.写分数时,究竟是先写分数线,还是先写分母?为什么?2.什么是分数3.分数各部分的名称叫什么写分数时,究竟是先写分数线,还是先写分母?为什么?分数的写法只有一种,先写分数线,再写分母,最后写分子。先写分数线的原因是这样写分数会更加整齐。1、分数表示一个数是另一个数的几分之几,或一个与所有的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。2、数中间的一条横线叫

1.写分数时,究竟是先写分数线,还是先写分母?为什么?

2.什么是分数

3.分数各部分的名称叫什么

写分数时,究竟是先写分数线,还是先写分母?为什么?

分数线数学符号-分数线符号的意义

分数的写法只有一种,先写分数线,再写分母,最后写分子。先写分数线的原因是这样写分数会更加整齐。

1、分数表示一个数是另一个数的几分之几,或一个与所有的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。

2、数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。有时是一条斜杠“/”,斜杠左边是分子,右边是分母。在某种意义上说,分数线等于除号和比号。分子是被除数,分母是除数;分子在比号左边,分母在比号右边。

3、一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。

扩展资料:

分数的性质:

(1)分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。

(2)分数可以表述成一个除法算式:如二分之一等于1除以2。其中,1 分子等于被除数,- 分数线等于除号,2 分母等于除数,而0.5分数值则等于商。

(3)分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而0.5分数值则等于比值。分数的基本性质:分数的分子和分母都乘以或都除以同一个不为零的数,所得到的分数与原分数的大小相等。(b、c不等于零)

(4)一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。

(5)当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行约分与通分。

百度百科 - 分数

百度百科 - 分子

百度百科 - 分母

百度百科 - 分数线

什么是分数

分数是把一个单位分成若干等份,表示其中的一份或几份的数

是除法的一种书写形式,如(读作五分之二),(读作二又七分之三)。在分数中,符号‘─’叫做分数线,相当于除号;分数线上面的数叫做分子,相当于被除数,如中的2;分数线下面的数叫做分母,相当于除数,如中的5。

历史:

最早的分数是整数倒数:代表二分之一的古代符号,三分之一,四分之一,等等。埃及人使用埃及分数c。 1000 bc。大约4000年前,埃及人用分数略有不同的方法分开。他们使用最小公倍数与单位分数。他们的方法给出了与现代方法相同的答案。埃及人对于Akhmim木片和二代数学纸莎草的问题也有不同的表示法。

希腊人使用单位分数和(后)持续分数。希腊哲学家毕达哥拉斯(c。530 bc)的追随者发现,两个平方根不能表示为整数的一部分。 (通常这可能是错误的归因于Metapontum的Hippasus,据说他已被处决以揭示这一事实)。

在印度的150名印度人中,耆那教数学家写了“Sthananga Sutra”,其中包含数字理论,算术学操作和操作。

分数各部分的名称叫什么

分数中间的横线叫作分数线,分数线下面的数是分母,分数线上面的数是分子。

分数简介:

分数(来自拉丁语,“破碎”)代表整体的一部分,或更一般地,任何数量相等的部分。当在日常英语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。分子和分母也用于不常见的分数,包括复合分数,复数分数和混合数字。

分数表示一个数是另一个数的几分之几,或一个与所有的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。

历史:

最早的分数是整数倒数:代表二分之一的古代符号,三分之一,四分之一,等等。埃及人使用埃及分数c。 1000 bc。大约4000年前,埃及人用分数略有不同的方法分开。他们使用最小公倍数与单位分数。他们的方法给出了与现代方法相同的答案。埃及人对于Akhmim木片和二代数学纸莎草的问题也有不同的表示法。

(1)外国。

希腊人使用单位分数和(后)持续分数。希腊哲学家毕达哥拉斯(c。530 bc)的追随者发现,两个平方根不能表示为整数的一部分。 (通常这可能是错误的归因于Metapontum的Hippasus,据说他已被处决以揭示这一事实)。

在印度的150名印度人中,耆那教数学家写了“Sthananga Sutra”,其中包含数字理论,算术学操作和操作。

(2)中国。

现代的称为bhinnarasi的分数似乎起源于印度在Aryabhatta(cad 500), Brahmagupta(c628)和Bhaskara(c1150)的工作。他们的作品通过将分子(Sanskrit:amsa)放在分母(cheda)上,但没有它们之间的条纹,形成分数。在梵文文献中,分数总是表示为一个整数的加和减。

整数被写在一行上,其分数在两行的下一行写成。如果分数用小圆?0was或交叉?+ was标记,则从整数中减去;如果没有这样的标志出现,就被理解为被添加。

文章标签: # 分数 # 分数线 # 分母