您现在的位置是: 首页 > 教育改革 教育改革

高考数学知识点-高考数学知识点大全 总结

tamoadmin 2024-08-26 人已围观

简介1.高考数学考的最多的知识点2.高考数学必背公式总结3.高三数学重要知识点整理4.高考数学必考知识点归纳有哪些高考数学考的最多的知识点高考数学考的最多的知识点:集合、简易逻辑(4个)1.元素与集合间的运算2.四种命题之间的关系3.全称、特称命题4.充要条件函数与导数(13个)1.比较大小2.分段函数3.函数周期性4.函数奇偶性5.函数的单调性6.函数的零点7.利用导数求值8.定积分的计算9.导数与

1.高考数学考的最多的知识点

2.高考数学必背公式总结

3.高三数学重要知识点整理

4.高考数学必考知识点归纳有哪些

高考数学考的最多的知识点

高考数学知识点-高考数学知识点大全 总结

高考数学考的最多的知识点:

集合、简易逻辑(4个)

1.元素与集合间的运算

2.四种命题之间的关系

3.全称、特称命题

4.充要条件

函数与导数(13个)

1.比较大小

2.分段函数

3.函数周期性

4.函数奇偶性

5.函数的单调性

6.函数的零点

7.利用导数求值

8.定积分的计算

9.导数与曲线的切线方程

10.最值与极值

11.求参数的取值范围

12.证明不等式

13.数学归纳法

数列(4个)

1.数列求值

2.证明等差、等比数列

3.递推数列求通顶公式

4.数列前n项和

三角函数(4个)

1.求值化简(同角三角函数的基本关系式)

2.正弦函数、余弦函数的图象和性质(函数图象变换、函数的周期性、函数的奇偶性、函数的单调性)

3.二倍角的正、余弦、角公式的化简

4.解三角形(正、余弦定理,面积公式)

平面向量(3个)

1.模长与向量的数量积

2.夹角的计算

3.向量垂直、平行的判定

不等式(3个)

1.不等式的解法

2. 基本不等式的应用(化简、证明、求最值)

3.简单线性规划问题

直线和圆的方程(3个)

1.直线的倾斜角和斜率

2.两条直线平行与垂直的条件

3.点到直线的距离

圆锥曲线(4个)

1.求标准方程

2.求离心率

3.弦长

4.直线与圆锥曲线的位置关系

空间简单几何体(3个)

1.线、面垂直与平行的判定

2.夹角与距离的计算

3.三视图(体积、表面积、视图判断)

排列、组合、二项式定理 (3个)

1.分类计数原理与分步计数原理

2.排列、组合的常用方法

概率与统计(6个)

1.抽样方法

2.频率分布直方图

3.古典概型与几何概型

4.条件概率

5. 离散型随机变量的分布列、期望和方差

6.线性回归方程与独立性检验

复数(3个)

1.复数的四则运算

2.复数的模长与共轭复数

3.复数与复平面的点的位置

框图(3个)

1.按流程计算结果

2.循环结构条件的判断

3.程序语言的读取

极坐标与参数方程(2个)

1.极坐标与直角坐标之间的互化

2.参数方程的化简

不等式选讲(2个)

1.含绝对值不等式的解法(零点分段法)

2. 利用不等式求参数的取值范围

高考数学必背公式总结

高中的数学有很多需要我们熟记的公式,这些数学中的公式可以帮助我们在高考数学的答题中更加简单容易,下面我为大家整理了一些重点数学公式。

高中数学公式大全

1、函数的单调性

(1)设x1、x2[a,b],x1x2那么

f(x1)f(x2)0f(x)在[a,b]上是增函数;

f(x1)f(x2)0f(x)在[a,b]上是减函数.

(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.

2、函数的奇偶性

对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

3、判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

高中数学如何学习?史上最强高考励志书《高考蝶变》教你怎样提高成绩,淘宝搜索《高考蝶变》购买。

4、两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

5、倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

6、抛物线

1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。

a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。

2、顶点式y=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。

3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。

4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。

学习数学应该注重课上和课下的复习

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。

高三数学重要知识点整理

篇一高三数学重要知识点整理

一、求动点的轨迹方程的基本步骤

 ⒈建立适当的坐标系,设出动点M的坐标;

 ⒉写出点M的集合;

 ⒊列出方程=0;

 ⒋化简方程为最简形式;

 ⒌检验。

 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

 ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

 ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

 ⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

 ⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

 ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

 *直译法:求动点轨迹方程的一般步骤

 ①建系——建立适当的坐标系;

 ②设点——设轨迹上的任一点P(x,y);

 ③列式——列出动点p所满足的关系式;

 ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

 ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

篇二高三数学重要知识点整理

 第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

 主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

 第二、平面向量和三角函数。

 重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

 第三、数列。

 数列这个板块,重点考两个方面:一个通项;一个是求和。

 第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

 第五、概率和统计。

 这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………,第三是独立,还有独立重复发生的概率。

 第六、解析几何。

 这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:

 第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

 第二类我们所讲的动点问题;

 第三类是弦长问题;

 第四类是对称问题,这也是2008年高考已经考过的一点;

 第五类重点问题,这类题时往往觉得有思路,但是没有答案,

 当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

 第七、押轴题。

 考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

篇三高三数学重要知识点整理

 考点一:集合与简易逻辑

 集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

 考点二:函数与导数

 函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

 考点三:三角函数与平面向量

 一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

 考点四:数列与不等式

 不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

 考点五:立体几何与空间向量

 一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

 考点六:解析几何

 一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

 考点七:算法复数推理与证明

 高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.

高考数学必考知识点归纳有哪些

高考数学必考知识点归纳:

第一,函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

第七,解析几何

高考的难点,运算量大,一般含参数。高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

文章标签: # 函数 # 方程 # 考查