您现在的位置是: 首页 > 教育改革 教育改革
高考空间几何_高考空间几何经典例题
tamoadmin 2024-06-08 人已围观
简介1.高考数学立体几何评分标准2.2011安徽高考理数空间几何那大题怎么证明BCEF四点共面?!!3.快高考了,我想知道高中平面几何、立体几何的所有定理,谢谢!4.关于高考几何体用的到的定理帮忙整理一下.比如三角形的垂心定理,重心定理等,还有其他图形的。 在线等、5.高中数学题,空间几何题,此题在高考中难度如何?6.高中数学立体几何解题技巧7.2823新高考二卷立体几何设法向量为n=(x,y,z),
1.高考数学立体几何评分标准
2.2011安徽高考理数空间几何那大题怎么证明BCEF四点共面?!!
3.快高考了,我想知道高中平面几何、立体几何的所有定理,谢谢!
4.关于高考几何体用的到的定理帮忙整理一下.比如三角形的垂心定理,重心定理等,还有其他图形的。 在线等、
5.高中数学题,空间几何题,此题在高考中难度如何?
6.高中数学立体几何解题技巧
7.2823新高考二卷立体几何
设法向量为n=(x,y,z),然后利用这个向量与目标平面内的两条直线上的向量(方向向量)垂直,每一个垂直可以获得一个关于x,y,z的方程,这样你就获得了两个方程组成的方程组,这个方程组有无数组解。
事实上,平面的法向量是不确定的,就其方向来说,也有两大类,再加上模不确定),那么这些,你可以由上面的方程组里,目测一下,哪个量的绝对值较小,便取这个量为1(当然2等等也可以,这样就可以确定出所有的坐标了。
如:得到2x+3y-z=0,x-2y=0这样的方程组后,可以发现x是y的两倍,便设y=1,这样x=2,则z=9,于是便可取法向量n=(2,1,9),事实上,所有与这个向量共线的向量均为法向量,如(1,1/2,9/2)等。
法向量:
法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normal vector)。在电脑图学(computer graphics)的领域里,法线决定着曲面与光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。
如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。
垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。
高考数学立体几何评分标准
我也是天津的,已经高考完了,今年高考的.
我们老师高考前特地说了这个问题,就是数学考试时空间几何的题是可以用空间向量做的,但是一定要保证不能出任何错误.因为判卷子时老师手里都会有评分标准,而空间向量的解法不作为正式的解法在答案中出现,所以一旦学生答题时用了,如果做的全对就给满分,如果错了是没有前面每一步的分的,也就是说是全扣的.
所以给个建议,如果可以的话尽量不要用空间向量,万一错了就一道大题一点分都没了,如果能用立体几何的定理知识还是尽量用这个,毕竟比较保险,如果中间错了前面的还是给分的.
2011安徽高考理数空间几何那大题怎么证明BCEF四点共面?!!
1、两个二倍角公式,诱导公式,各给1分;
2、如果只有最后一步结果,没有过程,则给1分,不影响后续得分;
3、最后一步结果正确,但缺少上面的某一步过程,不扣分;
4、如果过程中某一步化简错了,则只给这一步前面的得分点。
扩展资料:
不同省份的高考命题是不一样的,立体几何的分值也是不同的。从往年考题来看,立体几何主要考查点线面位置关系,锥体占多数,线面和面面位置关系较多,大多要考查锥体或者柱体和球体的结合,要特别关注三视图。
文科、理科考题难度差别不大,文科题目略为简单。文科、理科都是两道小题(一道选择题、一道填空题或者两道选择题)和一道大题,小题一题5分,大题12分,共22分。
快高考了,我想知道高中平面几何、立体几何的所有定理,谢谢!
设 G 是线段 DA 与线段 EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,所以 OB ∥ ,OB= ,OG=OD=2 同理,设 G′是线段 DA 与线段 FC 延长线的交点,有 OG′=OD=2,又由于 G 和 G′都在线段 DA 的延长线上,所以 G 与 G′重合。 在△GED 和△GFD 中,由 OB∥ ,OB= 和 OC∥ , OC= ,可知 B,C 分别是 GE 和 GF 的中点,所以 BC 是△GEF 的中位线,故 BC∥EF. (向量法) 过点 F 作 FQ⊥AD,交 AD 于点 Q,连 QE,由平面 ABED⊥平面 ADFC,知 FQ⊥平面 ABED,以 Q 为 坐标原点, 标系。 为 x 轴正向, 为 y 轴正向, 为 z 轴正向,建立如图所示空间直角坐 由条件知 E( ,0,0),F(0,0, ),B( ,- ,0),C(0,- , )。 则有, , 。 所以 ,即得 BC∥EF. 所以bcef共面
关于高考几何体用的到的定理帮忙整理一下.比如三角形的垂心定理,重心定理等,还有其他图形的。 在线等、
数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称。 立体几何一般作为平面几何的后续课程。立体测绘(Stereometry)是处理不同形体的体积的测量问题。如:圆柱,圆锥, 圆台, 球, 棱柱,棱锥等等。 立体几何空间图形
毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。 立体几何形戒指
尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
编辑本段基本课题
课题内容
包括:
各种各样的几何立体图形(10张) - 面和线的重合 - 两面角和立体角 - 方块, 长方体, 平行六面体 - 四面体和其他棱锥 - 棱柱 - 八面体, 十二面体, 二十面体 - 圆锥,圆柱 - 球 - 其他二次曲面: 回转椭球, 椭球,抛物面 ,双曲面 公理 立体几何中有4个公理 公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2 过不在一条直线上的三点,有且只有一个平面. 公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4 平行于同一条直线的两条直线平行。 各种立体图形表面积和体积一览表 名称 符号 面积S 体积V
正方体 a——边长 S=6a^2 V=a^3
长方体 a——长
b——宽
c——高 S=2(ab+ac+bc) V=abc
棱柱 S底——底面积
h——高 S=S侧+2S底 V=Sh
棱锥 S——底面积
h——高
V=Sh/3
棱台 S1和S2——上、下底面积
h——高
V=h[S1+S2+√(S1S2)]/3
拟柱体 S1——上底面积
S2——下底面积
S0——中截面积
h——高
V=h(S1+S2+4S0)/6
圆柱 r——底半径
h——高
C——底面周长C=2πr
S底——底面积
S侧——侧面积
S表——表面积 S底=πR^2
S侧=Ch
S表=Ch+2S底 V=S底h=πr^2h
空心圆柱 R——外圆半径
r——内圆半径
h——高
V=πh(R^2-r^2)
直圆锥 r——底半径
h------高
l ——母线 S=πr(r+l) V=πr^2h/3
圆台 r——上底半径
R——下底半径
h——高
l-------母线 S=π(r2+R2+rl+Rl) V=πh(R^2+Rr+r^2)/3
球 r——半径
d——直径 S=4πr^2; V=4/3πr^3=πd^3/6
球缺 h——球缺高
r——球半径
a——球缺底半径 a^2=h(2r-h)
V=πh(3a^2+h^2)/6 =πh2(3r-h)/3
球台 r1和r2——球台上、下底半径
h——高
V=πh[3(r12+r22)+h2]/6
圆环体 R——环体半径
D——环体直径
r——环体截面半径
d——环体截面直径
V=2π^2Rr^2 =π^2Dd^2/4
桶状体 D——桶腹直径
d——桶底直径
h——桶高
V=πh(2D^2+d2^)/12 (母线是圆弧形,圆心是桶的中心)
V=πh(2D^2+Dd+3d^2/4)/15 (母线是抛物线形)
注:初学者会认为立体几何很难,但只要打好基础,立体几何将会变得很容易。学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的。
三垂线定理
在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。 三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。 1,三垂线定理描述的是PO(斜线),AO(射 影),a(直线)之间的垂直关系. 2,a与PO可以相交,也可以异面. 3,三垂线定理的实质是平面的一条斜线和 平面内的一条直线垂直的判定定理. 关于三垂线定理的应用,关键是找出平面(基准面)的垂线. 至于射影则是由垂足,斜足来确定的,因而是第二位的. 从三垂线定理的证明得到证明a⊥b的一个程序:一垂, 二射,三证.即 几何模型
第一,找平面(基准面)及平面垂线 第二,找射影线,这时a,b便成平面上的一条直线与 一条斜线. 第三,证明射影线与直线a垂直,从而得出a与b垂直. 注: 1.定理中四条线均针对同一平面而言 2.应用定理关键是找"基准面"这个参照系 用向量证明三垂线定理 已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b垂直OA,求证:b垂直PA 证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b 向量PA=(向量PO+向量OA) 所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO 乘以 b) 加 (向量OA 乘以 b )=O, 所以PA垂直b。 2)已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b垂直PA,求证:b垂直OA 证明:因为PO垂直a,所以PO垂直b,又因为PA垂直b, 向量OA=(向量PA-向量PO) 所以向量OA乘以b==(向量PA-向量PO)乘以b=(向量PA 乘以 b )减 (向量PO 乘以 b )=0, 所以OA垂直b。 2.已知三个平面OAB,OBC,OAC相交于一点O,角AOB=角BOC=角COA=60度,求交线OA于平面OBC所成的角。 向量OA=(向量OB+向量AB),O是内心,又因为AB=BC=CA,所以OA于平面OBC所成的角是30度。
编辑本段二面角
定义
平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角。(这条直线叫做二面角的棱,每个半平面叫做二面角的面)
二面角的平面角
以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。 平面角是直角的二面角叫做直二面角。 两个平面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
二面角的大小范围
0≤θ≤π 相交时 0<θ<π,共面时 θ=π或0
二面角的求法
有六种: 1.定义法 2.垂面法 3.射影定理 4.三垂线定理 5.向量法 6.转化法 二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。过这个点分别在两平面做相交线的垂线,然后把两条垂线放到一个三角形中考虑。有时也经常做两条垂线的平行线,使他们在一个更理想的三角形中。 由公式S射影=S斜面cosθ,作出二面角的平面角直接求出。运用这一方法的关键是从图中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得 也可以用解析几何的办法,把两平面的法向量n1,n2的坐标求出来。然后根据n1·n2=|n1||n2|cosα,θ=α为两平面的夹角。这里需要注意的是如果两个法向量都是垂直平面,指向两平面内,所求两平面的夹角θ=π-α 二面角的通常求法: (1)由定义作出二面角的平面角; (2)作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角; (3)利用三垂线定理(逆定理)作出二面角的平面角; (4)空间坐标求二面角的大小。 三垂线法
其中,(1)、(2)点主要是根据定义来找二面角的平面角,再利用三角形的正、余弦定理解三角形。 (3)中利用三垂线定理求二面角,如图,前提条件是平面α与平面β的交线为 l。直线AB垂直于平面β于B点,交α于A点,步骤是: 第一步,过B作BP垂直于l与P。 第二步,连接AP。则∠APB为二面角A-l-B的平面角。 第三步,求出∠APB的大小,即为二面角A-l-B的大小。 如果是利用三垂线逆定理,前提条件相同,步骤是: 第一步,过A作AP垂直于l与P。 第二步,连接BP。则∠APB为二面角A-l-B的平面角。 第三步,求出∠APB的大小,即为二面角A-l-B的大小。
求二面角大小的基本步骤
(1)作出二面角的平面角: A:利用等腰(含等边)三角形底边的中点作平面角; B:利用面的垂线(三垂线定理或其逆定理)作平面角; C:利用与棱垂直的直线,通过作棱的垂面作平面角; 立体几何图形矢量图
D:利用无棱二面角的两条平行线作平面角。 (2)证明该角为平面角; (3)归纳到三角形求角。 另外,也可以利用空间向量求出。
二面角与平面角的关系
二面角的大小就用它的“平面角”来度量。二面角的平面角大小数值就等于二面角的大小。
编辑本段空间向量的描述方法
向量描述点、线、面
直线的方向向量:向量所在直线和直线平行或重合的向量叫做直线的方向向量。 向量描述法
点的位置向量:选一点作为基点,空间中任意一点可用向量OP表示。 平面的法向量:如果α所在的直线垂直于平面β,那么α是β的法向量。
直线和平面的位置关系
设直线m、n的方向向量为a、b,平面e、f的法向量为c、d,那么位置关系可列表:
平行 垂直
直线-直线 m//n->a=kb m⊥n->ab=0
直线-平面 m//e->ac=0 m⊥e->a=kc
平面-平面 e//f->c=kd e⊥f->cd=0
空间的角
直线所成的角:设直线m、n的方向向量为a、b,m,n所成的角为a。 cosa=cos<a,b>=|a*b|/|a||b| 直线和平面所成的角:设直线m的方向向量为a,平面e的法向量为c。 设b为m和e所成的角,则b=π/2±<a,c>。sinb=|cos<a,c>|=|a*c|/|a||c| 二面角:当双法向量的朝向一致时,平面e、f的法向量为c、d 各种角
设二面角e-e∩f-f为a,那么a=π-<c,d>=π-|c*d|/|c||d| 当双法向量的朝向不一致时,平面e、f的法向量为c、d 设二面角e-e∩f-f为a,那么a=<c,d>=|c*d|/|c||d|
空间距离的求解
异面直线的距离:l1、l2为异面直线,l1,l2公垂直线的方向向量为n,C、D为l1、l2上任意一点,l1到l2的距离为|AB|=|CD*n|/|n| 点到平面的距离:设PA为平面的一条斜线,O是P点在a内的射影,PA和a所成的角为b,n为a的法向量。 易得:|PO|=|PA|sinb=|PA|*|cos<PA,n>|=|PA|*(|PA*n|/|PA||n|)=|PA*n|/|PA| 直线到平面的距离为在直线上一点到平面的距离; 平面到平面的距离为在平面上一点到平面的距离; 距离
点到直线的距离:A∈l,O是P点在l上的射影,PA和l所成的角为b,s为l的方向向量。 易得:|PO|=|PA|*|sinb|=|PA|*|sin<PA,s>|=|(PA|^2|s|^2|-|PA*s|^2)^1/2/|s|
编辑本段线面方程
定义
平面:在空间中,到两点距离相等的点的轨迹叫做平面。 直线:同时属于两个平面的点的轨迹。 或:在平面里,到两个点距离相等的点。
方程
平面:根据定义,设动点为M(x,y,z),两点分别为(a,b,c)和(d,e,f) 则[(x-a)^2+(y-b)^2+(z-c)^2]^1/2=[(x-d)^2+(y-e)^2+(z-f)^2]^1/2 x^2-2ax+y^2-2by+z^2-2cz+(a^2+b^2+c^2)=x^2-2dx+y^2-2ey+z^2-2fz+(d^2+e^2+f^2) (2d-2a)x+(2e-2b)y+(2f-2c)z+(a^2-d^2+b^2-e^2+c^2-f^2)=0 形式为ax+by+cz+d=0 直线:根据定义,可列方程组: ax+by+cz+d=0 ex+fy+gz+h=0 得其形式是: x=jz+k y=lz+m
线面方程求法
(1)三点式 则三点同时满足 ax0+by0+cz0+d=0 ax1+by1+cz1+d=0 ax2+by2+cz2+d=0 可得出a-b-c-d的关系,再把d取特殊值,解方程。 (2)点线式 可在线上找两个点,转化成三点式。 (3)双线式(不异面) 可在两个线上共找三个点,转化成三点式。得:ax+by+cz+d=0 (4)线斜式 斜率:该平面和xOy平面的二面角的正切。 求法:设该平面为ax+by+cz+d=0,xOy是z=0 即k=c/(a^2+b^2+c^2)且它通过y=kx+b,z=lz+a 根据判定,可得a-b-c-d的关系。再把d赋特殊值。 (5)两点式 用待定系数法求出k,l,m,n的关系,再取特殊值。
向量的求法
直线:截取直线l上两点A(l,n,0)和B(k+l,m+n,1)方向向量为:AB=(k,m,1) 平面:取平面内三点:A(0,0,-d/c)B(1,1,-(d+b+a)/c)C(0,2,-(d+2b)/c) AC=(0,2,-2b/c)AB=(1,1,-(a+b)/c) 设向量n:(x,y,c)为平面的法向量,则 2y-2b=0 x+y-(a+b)=0 ->y=b x=a 则n=(a,b,c)为平面的一个法向量。 直线平面的关系 直线和直线: 设设直线方程为x=k1z+l1,y=m1z+n1和x=k2z+l2,y=m2z+n2 相交:两条直线所组成的方程组有实数解 平行:k1/k2=m1/m2且l1/l2≠n1/n2 异面:不相交也不平行 垂直:k1k2+m1m2=-1 直线和平面 设直线方程为x=kz+b,y=lz+a,平面方程为cx+dy+ez+f=0,p=k+l+e,q=a+b+f 属于:p=0,q=0 平行:p=0,q≠0 相交:p≠0 垂直:k/c=b/d=e 平面和平面 设平面方程为ax+by+cz+d=0和ex+fy+gz+h=0,p=a/e,q=b/f,r=c/g,s=d/h 相交:不平行 平行:p=q=r≠s 垂直:ae+bf+cg+dh=0
几何
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
高中数学题,空间几何题,此题在高考中难度如何?
立体几何中的公理、定理和常用结论
一、定理
1.公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
若A∈l,B∈l,A∈a,B∈a,则l?a.
2.公理2 如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过
这个公共点的一条直线.
P∈a,P∈a?a∩b=l,且P∈l.
3.公理3 经过不在同一条直线上的三点,有且只有一个平面.
推论1 经过一条直线和这条直线外的一点,有且只有一个平面.
推论2 经过两条相交直线,有且只有一个平面.
推论3 经过两条平行直线,有且只有一个平面.
4.异面直线的判定定理:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.(若a?α,A∈(/)α,B∈α,B∈(/)a,则直线AB和直线a是异面直线.)
5.公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行.
6.等角定理:如果一个角的两边和另一角的两边分别平行并且方向相同,那么这两个角相等.
7.定理:如果一条直线垂直于两条平行线中的一条直线,那么它也垂直于另一条直线.
若b∥c,a⊥b,则a⊥c.
8.直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.
若a/a,b?a,a∥b,则a∥a.
9.直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.
若a∥a,a?β,a?β=b,则a∥b.
10.直线与平面垂直的判定定理:如果一条直线和平面内的两条相交直线垂直,这条直线和这个平面垂直.
若m?α,n?α,m?n=O,l⊥m,l⊥n,则l⊥α.
11.:若两条平行直线中的一条垂直于一个平面,那么另一条直线也和这个平面垂直.
若a∥b,a⊥α,则b⊥α.
12.直线与平面垂直的性质定理:若两条直线同时垂直于一个平面,那么这两条直线平行.
若a⊥α,b⊥α,则a∥b.
13.平面与平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
若a?a,b?a,a?b=A,a∥b,b∥b,则a∥b.
14.平面与平面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.
若a∥b,a∩γ=a,b∩γ=b,则a∥b.
15.定理:如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.
若α∥β,a⊥α,则a⊥β.
16.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
若l⊥a,l?b,则a⊥b.
17.两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.
若a⊥b,a∩b=l,a?a,a⊥l,则a⊥b.
18.两个平面垂直的性质定理:如果两个平面互相垂直,那么过一个平面内一点且垂直于第二个平面的直线在第一个平面内.
二、常识
1.过空间一点,与已知平面垂直的直线有且只有一条.
2.过空间一点,与已知直线垂直的平面有且只有一个.
3.经过平面外一点有且只有一个平面和已知平面平行.
4.空间四点A、B、C、D,若直线AB与CD异面,则AC与BD,AD与BC也一定异面.
5.夹在两个平行平面间的平行线段相等.
6.经过两条异面直线中的一条,有且只有一个平面与另一条直线平行.
7.若直线a同时平行于两个相交平面,则a一定也平行于这两个相交平面的交线.
8.如果一条直线垂直于一个三角形的两边,那么它也垂直于第三边.
9.正方体的体对角线和它不相邻的面对角线垂直
10.平行于同一平面的两个平面平行.
11.垂直于同一个平面的两直线平行,垂直于同一直线的两平面平行
12.空间四面体A-BCD中,若有两对对棱互相垂直,则第三对对棱也互相垂直,且顶点A在平面BCD内的射影是△BCD的垂心(类似地,顶点B在平面ACD内的射影是ΔACD的垂心,…).
13.空间四面体P-ABC中,若PA、PB、PC两两垂直,则
①点P在平面ABC内的射影是ΔABC的垂心;
②△ABC的垂心O也是点P在平面ABC内的射影(PO⊥平面ABC).
14.空间四面体P-ABC中,
①若PA=PB=PC,则点P在平面ABC内的射影是△ABC的外心.
②若三个侧面上的斜高PH1=PH2=PH3,则点P在平面ABC内的射影是△ABC的内心.
15.如果两个平面同时垂直于第三个平面,那么这两个平面的交线垂直于第三个平面.
若a⊥b,P∈a,P∈a,a⊥b,则a?a.
高中立体几何梳理(看完立几无难题!!!)
基本概念
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3: 过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面: 平行、 相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为 ( 0°,90° ) esp.空间向量法
两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点—— 平行或异面
直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)
规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为 [0°,90°]
最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
esp.直线和平面垂直
直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
③直线和平面平行——没有公共点
直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1) 半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2) 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°]
(3) 二面角的棱:这一条直线叫做二面角的棱。
(4) 二面角的面:这两个半平面叫做二面角的面。
(5) 二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6) 直二面角:平面角是直角的二面角叫做直二面角。
esp. 两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为 ⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
Attention:
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
多面体
棱柱
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
棱柱的性质
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面(对角面)是平行四边形
棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的性质:
(1) 侧棱交于一点。侧面都是三角形
(2) 平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3) 多个特殊的直角三角形
esp: a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
Attention:
1、 注意建立空间直角坐标系
2、 空间向量也可在无坐标系的情况下应用
多面体欧拉公式:V(角)+F(面)-E(棱)=2
正多面体只有五种:正四、六、八、十二、二十面体。
球
attention:
1、 球与球面积的区别
2、 经度(面面角)与纬度(线面角)
3、 球的表面积及体积公式
4、 球内两平行平面间距离的多解性
高中数学立体几何解题技巧
算是比较简单的题目吧。不过这题很重要,有承上启下的作用。这题你做好了,往下就有信心。毕竟这道题目一般是放在第3道大题。所以这道题目一定要拿下。最好不要只学几何法或者向量法,两种方法都学。不同的题目,适合的方法不同。如果真要给什么建议的话,如果遇到简单的图形,比如正方体长方体什么的,直接建系,然后算。把计算速度练起来,这题目等于送你分了。
2823新高考二卷立体几何
高中数学立体几何解题技巧:
1、由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路;利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一;三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2、记一些小结论:诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
3、立体几何读题?
(1)弄清楚图形是什么几何体,规则的、不规则的、组合体等。
(2)弄清楚几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。
(3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。
2823新高考二卷立体几何内容如下:
一、立体几何的基本概念
立体几何是数学中的一个重要分支,研究物体的体积、表面积、形状、位置以及相互关系。它是数学和物理之间的桥梁,广泛应用于建筑、艺术、机械制造、地理和天文学等领域。
学习立体几何需要掌握点、线、面的概念,以及几何体的种类和特征,几何图形的性质和计算方法等。掌握立体几何的基本概念是深入理解和应用实际问题的基础。
二、几何体的种类和特征
几何体是由平面图形沿着一定方向延伸形成的实体物体。常见的几何体包括立方体、长方体、正方体、球体、柱体、锥体和棱锥等。
不同的几何体具有不同的特征,例如长方体有六个面,其中相对的两个面是相等的且平行的,每个面都是矩形,而棱锥则有一条特殊的棱叫做母线。掌握几何体的种类和特征是进行计算和求解问题的基本前提。
三、几何体的基本计算方法
立体几何的基本计算方法包括体积、表面积和重心的计算。体积是物体所占据的三维空间,一般用立方米或立方厘米表示,它的计算需要知道几何体的长、宽、高等信息。表面积是几何体表面所占据的空间大小,一般用平方米或平方厘米表示,它的计算需要考虑几何体的周长、高、半径等信息。
重心是一个几何体上所有质点受重力作用后的均衡点,它的计算需要理解几何体平衡状态的定义和计算公式。
四、应用举例
在实际应用中,立体几何经常用于测量空间的体积,计算建筑物面积,以及研究生物形态和地理景观等问题。例如,研究人口密集区的人口数量,需要先知道这片区域的面积,进而计算物体体积以获取人口密度。
而设计一座楼房,需要计算楼房的表面积以确定建筑材料的使用量,进而计算楼房的体积以确定房屋的容积和空间效率。应用立体几何解决实际问题需要有效运用计算方法和公式,并理解量化和计算的本质。
总之,立体几何是数学中的一个重要分支,掌握立体几何的基本概念、几何体的种类和特征、计算方法和实际应用,可以帮助人们更好地理解和应用于实际问题中。在新高考中,立体几何是高考数学的一部分,对数学爱好者来说,掌握这些知识可以提高数学综合素养,为后续研究提供更广阔的发展空间。