您现在的位置是: 首页 > 教育比较 教育比较

高考北京数学2024难度,高考北京数学2017

tamoadmin 2024-07-25 人已围观

简介1.2017各地高考状元具体成绩是多少?2.2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?3.怎样评价2017年理科高考数学试卷全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆全国Ⅲ卷地区:云南、广西、贵州、四川海南省:全国Ⅱ卷(语、数、英)+单独命题(政、史、地、物、化、生)山东省

1.2017各地高考状元具体成绩是多少?

2.2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?

3.怎样评价2017年理科高考数学试卷

高考北京数学2024难度,高考北京数学2017

全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建

全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆

全国Ⅲ卷地区:云南、广西、贵州、四川

海南省:全国Ⅱ卷(语、数、英)+单独命题(政、史、地、物、化、生)

山东省:全国Ⅰ卷(外语、文综、理综)+自主命题(语文、文数、理数)

江苏省:全部科目自主命题

北京市:全部科目自主命题

天津市:全部科目自主命题

2017各地高考状元具体成绩是多少?

 等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。

 高中数学知识点:等差数列公式

 等差数列公式an=a1+(n-1)d

 a1为首项,an为第n项的通项公式,d为公差

 前n项和公式为:Sn=na1+n(n-1)d/2

 Sn=(a1+an)n/2

 若m+n=p+q则:存在am+an=ap+aq

 若m+n=2p则:am+an=2ap

 以上n.m.p.q均为正整数

 解析:第n项的值an=首项+(项数-1)?公差

 前n项的和Sn=首项?n+项数(项数-1)公差/2

 公差d=(an-a1)?(n-1)

 项数=(末项-首项)?公差+1

 数列为奇数项时,前n项的和=中间项?项数

 数列为偶数项,求首尾项相加,用它的和除以2

 等差中项公式2an+1=an+an+2其中{an}是等差数列

 通项公式:公差?项数+首项-公差

 高中数学知识点:等差数列求和公式

 若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:

 S=(a1+an)n?2

 即(首项+末项)?项数?2

 前n项和公式

 注意:n是正整数(相当于n个等差中项之和)

 等差数列前N项求和,实际就是梯形公式的妙用:

 上底为:a1首项,下底为a1+(n-1)d,高为n。

 即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。

 高中数学知识点:推理过程

 设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:

 当d?0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。

 注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。

 求和推导

 证明:由题意得:

 Sn=a1+a2+a3+。。。+an①

 Sn=an+a(n-1)+a(n-2)+。。。+a1②

 ①+②得:

 2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)

 Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2

 Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)

 基本公式

 公式 Sn=(a1+an)n/2

 等差数列求和公式

 Sn=na1+n(n-1)d/2; (d为公差)

 Sn=An2+Bn; A=d/2,B=a1-(d/2)

 和为 Sn

 首项 a1

 末项 an

 公差d

 项数n

 表示方法

 等差数列基本公式:

 末项=首项+(项数-1)?公差

 项数=(末项-首项)?公差+1

 首项=末项-(项数-1)?公差

 和=(首项+末项)?项数?2

 差:首项+项数?(项数-1)?公差?2

 说明

 末项:最后一位数

 首项:第一位数

 项数:一共有几位数

 和:求一共数的总和

 本段通项公式

 首项=2?和?项数-末项

 末项=2?和?项数-首项

 末项=首项+(项数-1)?公差:a1+(n-1)d

 项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1

 公差= d=(an-a1)/n-1

 如:1+3+5+7+?99 公差就是3-1

 将a1推广到am,则为:

 d=(an-am)/n-m

 基本性质

 若 m、n、p、q?N

 ①若m+n=p+q,则am+an=ap+aq

 ②若m+n=2q,则am+an=2aq(等差中项)

2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?

在高考中,有这样一群人,永远排在前列,除了打败别人,也时常超越自己,他们样样精通,不仅爱学习,竟然课余生活也非常丰富。这些人,就是高考状元!

北京

北京二中高三九班熊轩昂以总分690分的成绩位居北京市文科第一。他的班主任告诉北青报记者,熊轩昂一直是班里很优秀的同学,成绩领先,但熊轩昂是那种学有余力的孩子,对自己认识非常清醒。喜欢运动,打篮球。沟通能力也特别强。

2017年高考北京理科状元705分,来自北京八中,李宇轩是八中素质班首届毕业生。

贵州

6月23日凌晨,贵州高考成绩放榜,高分考生在第一时间"出炉":贵阳一中李旭杨、查致远以700分的优异成绩并列全省理科总分、考分第一名。

都匀一中刘昱旻以裸分700、总分720位居全省文科第一名。

具体考分情况为

李旭阳语文132分、数学147分、外语143分、综合278分,总分700分;

查致远语文133分、数学137分、外语145分、综合285分,总分700分。

此外,高分考生还有贵阳一中文科考生陈竞立,698分;理科考生中,贵阳一中周子凯、袁菁青,以及思南中学的姚洋,盘县一中的李丁丁,分别都取得695分。

李旭杨(语文132分、数学147分、外语143分、综合278分,总分700分)

查致远(语文133分、数学137分、外语145分、综合285分,总分700分)刘昱旻(裸分700、总分720,全省文科第一名)

江西

江西高考成绩放榜,2017江西高考状元出炉:临川一中的刘浩捷以总分700分的优异成绩位列全省理科总分第一名。

四川

2017高考成绩已经陆续出炉了,四川高考状元公布,四川文科状元涂涴童拿下了,她以668分的成绩夺得桂冠。另外黎雨佳的理科成绩也是罕见的高分720。

湖北

今天凌晨,高考成绩终于放榜了,随州一中的肖雨同学,以700分的高分成为湖北省理科状元;襄阳五中的范筱雨同学,以683分的高分成为湖北省文科状元。

甘肃

理科状元出了“双黄蛋”:来自兰州一中、师大附中;文科状元也出自师大附中.

2017年甘肃高考理工最高分691分,文史最高分654分。

据悉,今年有两位学子高中理科“状元”,一名是肖智文,691分,来自兰州一中;

另一名是田野,也是691分,来自西北师大附中。

文科第一名654分,同样,来自西北师大附中。

2017高考文科状元:熊诗楠

怎样评价2017年理科高考数学试卷

由前面推导可知,即由题设可知根的判别式=16(4K^2-m^2+1)>0,后面又求得k=-(m+1)/2

这样将k代入进去,4K^2-m^2+1>0

4ⅹ[-(m+1)/2]^2-m^2+1>0

化简得2m+2>0得m>-1

所以当且仅当m>-1时,根的判别式﹥0就是这样得来的。

试题与去年相比试卷命朴实,平易近人,试卷贴近考生,符合师生期望,整体中较为常规。

试题中不少题目让师生一见如故,平和亲切,重视考查学生的基本数学素养,全盘兼顾知识点、思想方法与能力的考查,关注数学的应用意识与创新意识,除了具有良好的选拔功能,对中学数学教学也具有很好的导向作用,主要表现在注重基础,重视数学素养,加强数学应用与数学思维能力的培养。

注重基础2017年全国高考文科数学Ⅰ卷对基础知识与基础技能的重全面,又突出重点,贴切教学实际,试卷中的每种题型均设置了数量较多的基础题,许多试题都是单一知识点或是最基础的知识交汇点上设置,如1、2、3、6、7、10、11、13、14、15占选择填空题的比例较高达到63﹪.

数学素养方面:

试卷的第12题以解析几何中的椭圆为背景考察了对椭圆的焦点在x,y坐标轴上进行的分类讨论思想,第21题的导数题求导后对a的正负进行的分类讨论思想。第2题以我国太极图中的阴阳鱼为原型,设计几何概型以及几何概率计算问题,贴近考生生活,通过本题的求解,使考生感受中华传统优秀文化的民族性与世界性,深刻地认识到中华民族优秀传统文化的博大精深和源远流长,激励他们创造出更加辉煌的成就。

试卷重视数学知识的应用:

背景来自于学生所能理解的生活现实与社会现实,如19题以生产零件为命题背景,将数学知识与实际问题相结合,考查考生的阅读理解能力以及应用数学知识解决实际问题的能力,体现了数学的应用价值与人文特色,其中知识难度并不复杂,主要在计算能力上的要求较高。对考生的阅读理解能力、数据处理计算能力,理性思维进行了全方面的考查。

综合性与创新性:

为了提高区分度,试卷在注重基础的同时,也充分考查学生的创新意识,试题稳中有变,如第12题,解析几何知识为依托,结合三角函数考查学生对知识点的细节分析能力,给中等学生提供了展示舞台。再如第16题,对学生的空间想象能力,计算能力,分析问题的能力都有较高的要求,对于基础比较好的同学有一定的优势。具有较好的区分度,体现了高考的选拔性。再如第21题,第一问主要考察学生的分类讨论思想,属于学生熟悉的题型,但是对导函数进行因式分解具有一定的难度,第二问比较容易入手,由第1问的讨论学生需要讨论求最小值,难点在于求解不等式,需要学生有较高综合分析能力以及一定的计算能力的要求,这也充分体现了综合性与创新性的特点.当然本题也给优秀学生提供了发挥的平台。

从今年的试卷总体情况来看,新课标卷贴近中学教学实际,注重思想与方法的考察,体现了数学的基础性,应用性和工具性的学科特色,善于应用知识之间的内在联系构建试卷的主体结构,命题更加科学。

文章标签: # an # a1 # 项数