您现在的位置是: 首页 > 教育比较 教育比较
高考参数极坐标方程_高中数学极坐标与参数方程知识点总结
tamoadmin 2024-07-01 人已围观
简介高考复习之参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构1.直线
高考复习之参数方程
一、考纲要求
1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.
2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.
二、知识结构
1.直线的参数方程
(1)标准式 过点Po(x0,y0),倾斜角为α的直线l(如图)的参数方程是
(t为参数)
(2)一般式 过定点P0(x0,y0)斜率k=tgα=的直线的参数方程是
(t不参数) ②
在一般式②中,参数t不具备标准式中t的几何意义,若a2+b2=1,②即为标准式,此时, | t|表示直线上动点P到定点P0的距离;若a2+b2≠1,则动点P到定点P0的距离是
|t|.
直线参数方程的应用 设过点P0(x0,y0),倾斜角为α的直线l的参数方程是
(t为参数)
若P1、P2是l上的两点,它们所对应的参数分别为t1,t2,则
(1)P1、P2两点的坐标分别是
(x0+t1cosα,y0+t1sinα)
(x0+t2cosα,y0+t2sinα);
(2)|P1P2|=|t1-t2|;
(3)线段P1P2的中点P所对应的参数为t,则
t=
中点P到定点P0的距离|PP0|=|t|=||
(4)若P0为线段P1P2的中点,则
t1+t2=0.
2.圆锥曲线的参数方程
(1)圆 圆心在(a,b),半径为r的圆的参数方程是(φ是参数)
φ是动半径所在的直线与x轴正向的夹角,φ∈[0,2π](见图)
(2)椭圆 椭圆(a>b>0)的参数方程是
(φ为参数)
椭圆 (a>b>0)的参数方程是
(φ为参数)
3.极坐标
极坐标系 在平面内取一个定点O,从O引一条射线Ox,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O点叫做极点,射线Ox叫 做极轴.
①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.
点的极坐标 设M点是平面内任意一点,用ρ表示线段OM的长度,θ表示射线Ox到OM的角度 ,那么ρ叫做M点的极径,θ叫做M点的极角,有序数对(ρ,θ)叫做M点的极坐标
由于你的问题问得太笼统,我只能尝试按自己当初准备高考的心得来回答,希望你能满意。
1、数列问题
(1)熟练掌握等差、等比数列的性质、通项公式和求和公式;
(2)深刻理解课本上等差和等比数列求和公式是怎么推导出来的,其中蕴含的如“倒序相加”等解题思想是解题中经常用到的;
(3)熟练掌握将分母代数式连乘的分数转化成单项分式差,实现“消去中间,剩下两头”的题型;
(4)熟练掌握从现有数列(如{An})中抽取满足某个条件的若干项,组成一个新数列(如{Ank}),然后求新数列的通项和前多少项和的题型;
(5)熟练掌握通过化简或待定系数法,将不规则数列“凑”成等差或等比数列来解题的题型;
(6)熟练掌握数学归纳法的原理并应用它解决个别“先猜测再证明”的探究类题型。
(7)熟练掌握数列求极限的题型,尤其是通过化简让分母的指数比分子的指数高,以便n无穷大的时候分式等于0
2、圆锥曲线问题
(1)熟练掌握圆锥曲线的几何定义和准线定义,深刻理解“数形结合”的思想,这是解析几何的灵魂和精髓:用代数思想研究几何问题,实现定量求解;
(2)熟练运用圆锥曲线(椭圆、双曲线和抛物线)的普通方程求解线段、点到线的距离和两条线的夹角等问题;
(3)熟练运用圆锥曲线的参数方程辅助解题,尤其是椭圆和双曲线的参数方程跟三角函数结合非常紧密,而且三角函数的有界性又跟不等式求最大最小值关系密切。
(4)由于平面解析几何解决的是平面内的问题,如果在求解立体几何中的问题中,我们能确证点到面的距离或二面角可以在某个平面内解决,但从纯几何角度不容易记计算,这时候我们可以在立体图的某个面建立坐标系,把立体几何中的问题转化成平面解析几何的问题(点到线的距离,线的夹角)来求解,有时候这样效果很好。
顺便说一下,下面几个“数学思想”在平时考试和高考中尤为重要:
(1)方程的思想:从形式上变未知为已知,然后找出关系,求出这个形式上的已知得解;
(2)不等式的思想:利用不等式进行放大和缩小来判断变量或表达式的极限,求解最大、最小值;
(3)函数的思想:把现实问题抽象成代数问题,根据变量的范围动态考察函数规律的变化规律;
(4)数形结合的思想:充分利用图像的直观、形象性辅助分析和计算;
(5)分类讨论的思想:体现理性思维的严密性,具体情况具体分析。
(6)反证法的思想:逆向思维,从相反的角度看问题;
(7)数学归纳思想:根据有限的数据试图探寻总体的规律,然后用归纳法验证猜测的正确性。
如果能把上面说的技能都攻克了,相信你面对这2类问题都游刃有余了。