您现在的位置是: 首页 > 教育比较 教育比较

广西高考试卷数学,广西高考理科数学答案

tamoadmin 2024-06-03 人已围观

简介1.广西高考是什么卷2.2023广西理科高考人数3.[高考]我是广西的一名理科考生,我的数学和理综成绩特别差,数学一般只有五六十分,理综一百多分,总分四百...4.广西高考数学考什么卷1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()A.B.C.D.

1.广西高考是什么卷

2.2023广西理科高考人数

3.[高考]我是广西的一名理科考生,我的数学和理综成绩特别差,数学一般只有五六十分,理综一百多分,总分四百...

4.广西高考数学考什么卷

广西高考试卷数学,广西高考理科数学答案

1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]

已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()

A.B.C.D.

2.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第16题,文科数学第16题]

已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是.

①两条平行直线②两条互相垂直的直线

③同一条直线④一条直线及其外一点

在一面结论中,正确结论的编号是(写出所有正确结论的编号).

3.[2004年全国高考(四川云南吉林黑龙江)文科数学第6题]

正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()

A.75°B.60°C.45°D.30°

4.[2004年全国高考(四川云南吉林黑龙江)理科数学第7题,文科数学第10题]

已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为,则

球心O到平面ABC的距离为()

A.B.C.D.

5.[2004年全国高考(四川云南吉林黑龙江)理科数学第16题,文科数学第16题]

下面是关于四棱柱的四个命题:

①若有两个侧面垂直于底面,则该四棱柱为直四棱柱

②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱

③若四个侧面两两全等,则该四棱柱为直四棱柱

④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱

其中,真命题的编号是(写出所有正确结论的编号).

6.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第9题,文科数学第10题]

正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()

A.B.C.D.

7.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第13题,文科数学第14题]

用平面截半径为的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为.

8.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第3题]

正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为()

A.B.C.D.

9.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第7题]

对于直线m、n和平面,下面命题中的真命题是()

A.如果、n是异面直线,那么

B.如果、n是异面直线,那么相交

C.如果、n共面,那么

D.如果、n共面,那么

10.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第11题]

已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平

面ABC的距离为()

A.1B.C.D.2

11.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第10题]

已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=,则球心

到平面ABC的距离为()

A.1B.C.D.2

12.(2004年北京高考·理工第3题,文史第3题)

设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,,则

②若,,,则

③若,,则

④若,,则

其中正确命题的序号是

A. ①和②B. ②和③C. ③和④D. ①和④

13.(2004年北京高考·理工第4题,文史第6题)

如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是

A. 直线B. 圆C. 双曲线D. 抛物线

14.(2004年北京高考·理工第11题,文史第12题)

某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,

表面积是______________cm2

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题,满分12分]

如图,已知四棱锥 P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.

(I)求点P到平面ABCD的距离;

(II)求面APB与面CPB所成二面角的大小.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题,满分12分]

如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.

(Ⅰ)求证CD⊥平面BDM;

(Ⅱ)求面B1BD与面CBD所成二面角的大小.

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题,满分12分]

三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,

(1)求证:AB ⊥ BC;

(2,理科)设AB=BC=,求AC与平面PBC所成角的大小.

(2,文科) 如果AB=BC=,求侧面PBC与侧面PAC所成二面角的大小.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题,本小题满分12分]

如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.

(Ⅰ)求四棱锥P—ABCD的体积;

(Ⅱ)证明PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:

(I)三棱柱的侧面展开图的对角线长

(II)该最短路线的长及的值

(III)平面与平面ABC所成二面角(锐角)的大小

20.(2004年北京高考·理工第16题,本小题满分14分)

如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:

(I)该三棱柱的侧面展开图的对角线长

(II)PC和NC的长

(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)

参考答案

1.A2.①②④3.C4.B5.②④6.C7.8.A9.C

10.A11.A12.A13.D14.

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题]

本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.

(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.

∵AD⊥PB,∴AD⊥OB,

∵PA=PD,∴OA=OD,

于是OB平分AD,点E为AD的中点,所以PE⊥AD.

由此知∠PEB为面PAD与面ABCD所成二面角的平面角,

∴∠PEB=120°,∠PEO=60°

由已知可求得PE=

∴PO=PE·sin60°=,

即点P到平面ABCD的距离为.

(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.

.连结AG.

又知由此得到:

所以

等于所求二面角的平面角,

于是

所以所求二面角的大小为.

解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=BC.

∵AD⊥PB,∴BC⊥PB,FG⊥PB,

∴∠AGF是所求二面角的平面角.

∵AD⊥面POB,∴AD⊥EG.

又∵PE=BE,∴EG⊥PB,且∠PEG=60°.

在Rt△PEG中,EG=PE·cos60°=.

在Rt△PEG中,EG=AD=1.

于是tan∠GAE==,

又∠AGF=π-∠GAE.

所以所求二面角的大小为π-arctan.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题]

本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.

满分12分.

解法一:(Ⅰ)如图,连结CA1、AC1、CM,则CA1=

∵CB=CA1=,∴△CBA1为等腰三角形,

又知D为其底边A1B的中点,

∴CD⊥A1B.∵A1C1=1,C1B1=,∴A1B1=

又BB1=1,A1B=2. ∵△A1CB为直角三角形,D为A1B的中点,

∴CD=A1B=1,CD=CC1,又DM=AC1=,DM=C1M.

∴△CDM≌△CC1M,∠CDM=∠CC1M=90°,即CD⊥DM.

因为A1B、DM为平在BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设F、G分别为BC、BD的中点,连结B1G、FG、B1F,则FG//CD,FG=CD.

∴FG=,FG⊥BD.

由侧面矩形BB1A1A的对角线的交点为D知BD=B1D=A1B=1,

所以△BB1D是边长为1的正三角形.

于是B1G⊥BD,B1G=∴∠B1GF是所求二面角的平面角,

又 B1F2=B1B2+BF2=1+(=,

即所求二面角的大小为

解法二:如图,以C为原点建立坐标系.

(Ⅰ)B(,0,0),B1(,1,0),A1(0,1,1),

D(,M(,1,0),

则∴CD⊥A1B,CD⊥DM.

因为A1B、DM为平面BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设BD中点为G,连结B1G,则

G(),、、),

所以所求的二面角等于

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题]

本小题主要考查两个平面垂直的性质、直线与平面所成角等有关知识,以及逻辑思维能力和空间想象能力.满分12分.

(Ⅰ)证明:如图1,取AC中点D,连结PD、BD.

因为PA=PC,所以PD⊥AC,又已知面PAC⊥面ABC,

所以PD⊥面ABC,D为垂足.

因为PA=PB=PC,所以DA=DB=DC,

可知AC为△ABC的外接圆直径,因此AB⊥BC.

(Ⅱ,理科)解:如图2,作CF⊥PB于F,连结AF、DF.

因为△PBC≌△PBA,所以AF⊥PB,AF=CF.

因此,PB⊥平面AFC,

所以面AFC⊥面PBC,交线是CF,

因此直线AC在平面PBC内的射影为直线CF,

∠ACF为AC与平面PBC所成的角.

在Rt△ABC中,AB=BC=2,所以BD=

在Rt△PDC中,DC=

在Rt△PDB中,

在Rt△FDC中,所以∠ACF=30°.

即AC与平面PBC所成角为30°.

(2,文科)解:因为AB=BC,D为AC中点,所以BD⊥AC.

又面PAC⊥面ABC,

所以BD⊥平面PAC,D为垂足.

作BE⊥PC于E,连结DE,

因为DE为BE在平面PAC内的射影,

所以DE⊥PC,∠BED为所求二面角的平面角.

在Rt△ABC中,AB=BC=,所以BD=.

在Rt△PDC中,PC=3,DC=,PD=,

所以

因此,在Rt△BDE中,,

所以侧面PBC与侧面PAC所成的二面角为60°.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题]

本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析

问题能力.满分12分

解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.

作PO⊥平面在ABCD,垂足为O,连结OE.

根据三垂线定理的逆定理得OE⊥AD,

所以∠PEO为侧面PAD与底面所成的二面角的平面角,

由已知条件可知∠PEO=60°,PE=6,

所以PO=3,四棱锥P—ABCD的体积

VP—ABCD=

(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因为所以PA⊥BD.

解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,

又知AD=4,AB=8,

所以Rt△AEO∽Rt△BAD.

得∠EAO=∠ABD.

所以∠EAO+∠ADF=90°

所以AF⊥BD.

因为直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形

其对角线长为

(II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为

(III)连接DB,,则DB就是平面与平面ABC的交线

在中

由三垂线定理得

就是平面与平面ABC所成二面角的平面角(锐角)

侧面是正方形

故平面与平面ABC所成的二面角(锐角)为

20.(2004年北京高考·理工第16题)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是一个长为9,宽为4的矩形,其对角线长为

(II)如图1,将侧面绕棱旋转使其与侧成在同一平面上,点P运动到点的位置,连接,则就是由点P沿棱柱侧面经过棱到点M的最短路线

设,则,在中,由勾股定理得

求得

(III)如图2,连结,则就是平面NMP与平面ABC的交线,作于H,又平面ABC,连结CH,由三垂线定理得,

就是平面NMP与平面ABC所成二面角的平面角(锐角)

在中,

在中,

故平面NMP与平面ABC所成二面角(锐角)的大小为

广西高考是什么卷

广西高考数学是全国几卷介绍如下:

2023广西高考用全国甲卷。

广西属于高考难度噩梦模式地区。

高考试卷难度第5档地区(噩梦模式)山东,四川,云南,安徽,广西,山西。

广西高考总分及各科目分值:

广西高考总分750分。广西高考各科分值为:

广西文科:语文150分,数学150分,外语150分,文科(政治,历史,地理)综合300分,共计750分。

广西理科:语文150分,数学150分,外语150分,理科(物理,化学,生物) 综合300分,共计750分。

高考注意事项:

1、掌握时间心不慌

掌握考试时间,迟到15分钟不得进场,一般要提早20分钟,充分利用开考前的五分钟,认真倾听监考老师宣读有关规则和注意事项,以免事后惹麻烦。

接过考卷,先认真填写姓名、学校、准考证号、座号等,只须检查一下有没有漏页、白页即可,无须把题目从头到底地详细看一遍,只须看清解题的要求,试卷页数,大致了解一下试题份量、难度等。

2、考好第一科

进入考场,调整一下姿势,舒适地坐在位子上;摆好文具,戴眼镜的把眼镜摘下擦一擦,尽快进入角色;此时心中想着的只是考试的注意事项,不要再多虑考试的结果,成败、得失。

第一科的考试很重要,但开考前不宜过早地在教室外等待考试,可以在操场等场所有意识地放松。做到镇定、自如,不慌张。

如果出现心律轻快,手脚发抖等紧张现象,也属正常现象,可以适当进行调节,如深呼吸,同时告诫自己别紧张,不害怕。

3、先易后难不慌忙

先易后难:按照题号顺序审题,会一道就做一道,一时不会做的就先跳过去(有疑问的、不会的在草稿纸上做记录),这样做的好处是:

(1)使自己很快进入答题状态。

(2)随着答题数的增加,心中越来越有数,信心不断增强,智力操作效率将越来越高,难题或许不会再难了。

4、舍车保帅亦淡然

舍车保帅,自我暗示,一套卷,低、中、高三种难度都有。会做的题力求全对,避免会而不对,对而不全,对中档题要力拼,尽量多拿分,分分必得。对于自己一点都不会的高难度题,要敢于果断放弃,因为在这方面停留,没有任何价值和必要。

5、离开考场学会及时遗忘。

及时遗忘,考后立即离开试场,不要在考场外校对答案,不要“看别人脸上的天气预报”,因为太多不准。做到考完一门,忘掉一门,不回忆,不细想,不追究答案,不在已考的科目上浪费时间,集中精力对付下一门。

2023广西理科高考人数

广西高考是什么卷介绍如下:

2023广西高考用的是全国甲卷,高考采用传统高考文理科模式。全国甲卷适用地区:西藏、四川、贵州、广西、云南。

高考阅卷情况

普通高考的阅卷是实施网上阅卷的方法,当考试结束的时候,省教育考试院将试卷答题卡全部收集起来,先召开阅卷大会,然后将在指定的一所普通高校内的计算机办公大楼组织人员展开阅卷。

答题卡是先拆封后进行扫描录入计算机系统,这一部分将由公安机关单位负责(确保答题卡内容能顺利扫描进计算机系统不被泄露出去),试卷进行切割,

选择题部分由工作人员将标准答案录进系统,由计算机自动判别,解答题和作文部分实行的是人工评分的方式只要是考生回答有理都能获分。阅卷结束的时候,省教育考试院将试卷答题卡重新装订密封进行保管,任何人不得查看,3年后进行销毁处理。

高考试卷的所有客观题批改都是由电脑完成,所有的主观题都实行双评制度,如果两位老师给出的分数差距超出了阈值,那就会自动启动三评程序,如果三评老师给出的分值也超出了阈值,则将启动仲裁程序。

广西高考总分多少

广西高考试卷总分为750分,其中语文科目满分150分;数学科目满分150分;英语科目满分150分;文综和理综各自均为300分。

成绩无法提升,除了受到心态、努力程度的影响,还离不开方法。

对于高三的同学来说,大家应该有这样的意识,学习方法不是一成不变的,而是应该随着学习任务的变化,而进行一定的调整。

比如说,在此之前,同学们着重知识点的记忆,而在接下来的时间里,大家更注重刷题和归纳,不同的任务之下,方法也应该进行一定的调整。

[高考]我是广西的一名理科考生,我的数学和理综成绩特别差,数学一般只有五六十分,理综一百多分,总分四百...

2023广西理科高考人数是22万人。

知识拓展:

2023广西高考模式是“3+文综/理综”的传统模式是指语文、数学(分文、理)、外语3门科目;“小综合”分为“文科综合”和“理科综合”,“文科综合”是指政治、历史、地理3门科目的综合,“理科综合”是指物理、化学、生物3门科目的综合

2023年广西高考用全国甲卷。高考总分为750分,其中语文、数学、外语分别为150分,另外文科综合或理科综合满分为300分。广西普通高考全国统考各科目均采用教育部命制的试题,各科考试时长及赋分均与往年一样,没有变化。

广西理科高考涵盖了数学、物理、化学、生物等学科知识,并根据教材要求进行考查。高考试卷主要分为选择题、填空题、计算题和解答题等不同类型的题目,要求考生具备扎实的基础知识和一定的解题能力。

广西理科高考对学科知识的要求较高,除了对各学科基本概念、原理和公式的掌握外,还要求学生有较好的逻辑思维和推理能力。考试题目可能涉及到不同知识点的综合运用,需要考生具备较深入的理解和分析能力。

广西作为一个人口众多的省份,高考竞争非常激烈。理科的报考人数通常比文科要多,这也意味着考生之间的竞争更加激烈。学生需要在备考过程中注重提高自身竞争力,不仅要有足够的知识储备,还需具备高效的学习方法和良好的心理素质。

广西理科高考是一场长期紧张的战斗,学生需要在繁重的学业负担下保持良好的状态。高考成绩对升学和未来发展具有重要影响,因此考生和家长往往会面临较大的心理压力。同时,高考复习期间需要有良好的时间规划和自我调控能力,以减轻压力并提高效率。

广西高考数学考什么卷

归纳错题的类型其实高考的题型都是确定的几个大类你把每种类型的解题步骤归纳下基本上题型都有固定模式明白是哪一类然后清晰的知道它的解题步骤先求什么后求什么题要精做一题要懂一题然后找类似题型在做几题巩固下吧

广西高考数学考全国甲卷

资料拓展:

数学[英语:mathematics,源自古希腊语μ?θημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。

数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。

数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。

具体地,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。

文章标签: # 数学 # 高考 # 平面