您现在的位置是: 首页 > 教育比较 教育比较
高考数学 山东卷_山东卷数学高考答案解析
tamoadmin 2024-05-27 人已围观
简介1.2022年高考数学卷真题及答案解析(全国新高考1卷)2.2012山东高考理科数学第十六题详解3.2022新高考全国一卷数学试卷及答案解析4.2019年山东高考数学难度解析及数学试卷答案点评(word文字版下载)5.求解2012年数学高考山东卷16题(要过程)6.2023年山东省高考数学难度7.2009年山东高考理科数学问答试题及答案山东高考数学难度具体如下:2023年山东高考各科试题难度总体来
1.2022年高考数学卷真题及答案解析(全国新高考1卷)
2.2012山东高考理科数学第十六题详解
3.2022新高考全国一卷数学试卷及答案解析
4.2019年山东高考数学难度解析及数学试卷答案点评(word文字版下载)
5.求解2012年数学高考山东卷16题(要过程)
6.2023年山东省高考数学难度
7.2009年山东高考理科数学问答试题及答案
山东高考数学难度具体如下:
2023年山东高考各科试题难度总体来说适中,山东高考题目大部分都是比较难的,尤其是山东历史、政治和地理等科目题目,涉及知识点较多,难度较大。今年山东高考数学试卷难度中等偏上,数学基础好的考生,也觉得今年高考数学难度偏高。
山东高考数学难度较大。山东省2023年普通高考数学科目试题设置相对比较难,难度有所增加,但整体还是在适当难度范围内。2023年山东高考数学科目试卷结构设计合理,分值较为均衡,各个章节的试题分布比较均匀。
同时还加强了对解题思路和分析能力的考查,有利于锻炼考生的综合素质。试题难度虽然较大,但是不属于过度难题或者是普及难度过低的情况。针对不同学生的水平,考试安排了多种考试方式,同时也更加注重考生的实际能力水平。
山东高考数学试题对知识点的覆盖面、深度等方面进行了全方位的考查,既考察了基础知识的掌握,也重视了创新思维和解题方法的培养,对于提高学生的数学素养具有一定的推动作用。由于试题有一定难度,因此也引起了家长和学生们的关注。
相对于以往的试题,今年的高考数学考卷侧重于综合能力测试,一些考点需要考生在实际解题中进一步发现、理解和掌握。总之,山东高考数学试题难度适中,不仅考察了基础知识的掌握,还注重了综合能力的提高和创新思维的培养。
虽然有一定难度,但总体还是在适当的难度范围内。考生在考前要做好充分的准备,认真研究历年真题,以此提高自己的解题思路和应对能力。
2022年高考数学卷真题及答案解析(全国新高考1卷)
今天小编辑给各位分享2022高考数学题及答案的知识,其中也会对2020高考数学题及答案解析分析解答,如果能解决你想了解的问题,关注本站哦。
2022年全国乙卷高考数学试题答案
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。
2022年全国乙卷高考数学试题答案
全面认识你自己
认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。
首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。
其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。
最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。
高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。
与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。
此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。
在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。
考生个人特征情况
考生个人特征如兴趣、特长、志向、能力、职业价值观等。
兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。
特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。
志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。
能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。
职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。
2022年全国乙卷高考数学试题答案相关文章:
★2022高考全国乙卷试题及答案
★2022高考理科数学乙卷试题解析
★2022年全国乙卷高考理科数学
★2022年全国乙卷文科数学卷真题公布
★2022年高考数学试题及答案
★2022年全国乙卷高考数学真题及答案
★2022年全国理科数学卷试题答案及解析
★2022全国Ⅰ卷高考数学试题及参考答案一览
★2022年英语全国乙卷试题及答案
★2022年高考乙卷数学真题试卷
2022年全国新高考1卷数学试题及答案解析
数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学试题答案解析
高考数学复习主干知识点汇总:
因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:
1.函数
函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。
2.三角函数
三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。
3.立体几何
承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限
数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。
5.解析几何
直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。
2022年全国新高考1卷数学试题及答案解析相关文章:
★2022高考甲卷数学真题试卷及答案
★2022年新高考Ⅱ卷数学真题试卷及答案
★2022高考全国甲卷数学试题及答案
★2022高考数学大题题型总结
★2022全国乙卷理科数学真题及答案解析
★2022年全国乙卷高考数学试卷
★2022年新高考1卷语文真题及答案解析
★全国新高考一卷2022语文试题及答案一览
★2022江西高考文科数学试题及答案
★2022全国新高考II卷语文试题及答案解析
2022年全国新高考1卷数学试题及答案详解
高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学答案详解
2022高考数学知识点总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式
②根据具体问题中的数量关系列不等式并解决简单实际问题
③用数轴表示一元一次不等式的解集
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
一、排列
1定义
从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.
2排列数的公式与性质
排列数的公式:Amn=n
特例:当m=n时,Amn=n!=n×3×2×1
规定:0!=1
二、组合
1定义
从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
三、排列组合与二项式定理知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM
2.排列与组合
Anm=n-=n!/!Ann=n!
Cnm=n!/!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法
插空法间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
把具体问题转化或归结为排列或组合问题;
通过分析确定运用分类计数原理还是分步计数原理;
分析题目条件,避免“选取”时重复和遗漏;
列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn
特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差→变形→判断符号。
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力
2022年全国新高考1卷数学试题及答案详解相关文章:
★2022高考北京卷数学真题及答案解析
★2022高考甲卷数学真题试卷及答案
★2022北京卷高考文科数学试题及答案解析
★2022高考全国甲卷数学试题及答案
★2022年新高考Ⅱ卷数学真题试卷及答案
★2022全国乙卷理科数学真题及答案解析
★2022高考数学大题题型总结
★2022年高考全国一卷作文预测及范文
★2022年高考数学必考知识点总结最新
★2022年全国乙卷高考数学试卷
2022年北京高考数学试题及参考答案
相比很多同学在高考过后的第一时间就是找答案核对,虽然知道这样可能会影响心情,但还是忍不住想要对照答案。下面是我为大家整理的关于2022年北京高考数学试题及参考答案,如果喜欢可以分享给身边的朋友喔!
2022年北京高考数学试题
2022年北京高考数学试题参考答案
高考数学答题策略
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
一、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。
二、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。
三、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
四、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
2022年北京高考数学试题及参考答案相关文章:
★2022数学高考题及答案
★2022新高考数学Ⅰ卷试卷及参考答案
★2022年全国Ⅰ卷高考数学试题及参考答案公布
★2022全国一卷高考数学试题及答案
★2022新高考全国一卷数学试卷及答案解析
★2022年高考数学试题及答案
★2022全国新高考Ⅰ卷数学卷完整试题及答案一览
★2022新高考全国一卷数学试卷答案解析
★2022年高考数学全国乙卷试题答案
★2022新高考数学试题及答案详解
2012山东高考理科数学第十六题详解
2022年高考数学依据数学课程标准命题,深化基础考查,突出主干知识,创新试题设计。下面是我为大家收集的关于2022年高考数学卷真题及答案解析(全国新高考1卷)。希望可以帮助大家。
高考数学卷真题
高考数学卷真题答案解析
高考数学知识点整理
一、直线方程.
1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.
注:①当或时,直线垂直于轴,它的斜率不存在.
②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.
注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.
附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.
3. ⑴两条直线平行:
‖两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.
(一般的结论是:对于两条直线,它们在轴上的纵截距是,则‖,且或的斜率均不存在,即是平行的必要不充分条件,且)
推论:如果两条直线的倾斜角为则‖.
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)
4. 直线的交角:
⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.
⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.
5. 过两直线的交点的直线系方程为参数,不包括在内)
6. 点到直线的距离:
⑴点到直线的距离公式:设点,直线到的距离为,则有.
注:
1. 两点P1(x1,y1)、P2(x2,y2)的距离公式:.
特例:点P(x,y)到原点O的距离:
2. 定比分点坐标分式。若点P(x,y)分有向线段,其中P1(x1,y1),P2(x2,y2).则
特例,中点坐标公式;重要结论,三角形重心坐标公式。
3. 直线的倾斜角(0°≤<180°)、斜率:
4. 过两点.
当(即直线和x轴垂直)时,直线的倾斜角=,没有斜率
⑵两条平行线间的距离公式:设两条平行直线,它们之间的距离为,则有.
注;直线系方程
1. 与直线:Ax+By+C= 0平行的直线系方程是:Ax+By+m=0.( m?R, C≠m).
2. 与直线:Ax+By+C= 0垂直的直线系方程是:Bx-Ay+m=0.( m?R)
3. 过定点(x1,y1)的直线系方程是: A(x-x1)+B(y-y1)=0 (A,B不全为0)
4. 过直线l1、l2交点的直线系方程:(A1x+B1y+C1)+λ( A2x+B2y+C2)=0 (λ?R) 注:该直线系不含l2.
7. 关于点对称和关于某直线对称:
⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.
⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.
若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.
⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.
注:①曲线、直线关于一直线()对称的解法:y换x,x换y. 例:曲线f(x ,y)=0关于直线y=x–2对称曲线方程是f(y+2 ,x –2)=0.
②曲线C: f(x ,y)=0关于点(a ,b)的对称曲线方程是f(a – x, 2b – y)=0.
2022年高考数学卷真题及答案解析(全国新高考1卷)相关 文章 :
★ 2022全国甲卷高考数学文科试卷及答案解析
★ 2022年新高考Ⅱ卷数学真题试卷及答案
★ 2022高考全国甲卷数学试题及答案
★ 2022北京卷高考文科数学试题及答案解析
★ 2021年高考全国甲卷数学理科答案
★ 2022全国乙卷理科数学真题及答案解析
★ 2021新高考全国1卷数学真题及答案
★ 2022年全国乙卷高考理科数学题目与答案解析
★ 2022年全国乙卷高考数学(理科)试卷
★ 2022江西高考文科数学试题及答案
2022新高考全国一卷数学试卷及答案解析
此时圆弧滚动了 2 - 0 = 2 的长度。假设 圆C(2,1) 与x轴切于Q(2,0),所以弧长PQ = 2. 所以圆心角PCQ = 2 弧度。 运用弦切角PQO = 1/2 × 圆心角PCQ的性质, 得直线PQ的斜率k= -tan1 .所以直线PQ 为y = - tan1 (x - 2), 联立C2方程 (x - 2 )^2 + (y - 1) ^ 2 = 1, and solve for y, we get y = 2 sin^2(1) = 1 - cos2, hence x = y / (-tan1) + 2 = -2 sin1 cos1 + 2 = 2 - sin2. 所以 OP=(2 - sin2, 1 - cos2)
完毕
2019年山东高考数学难度解析及数学试卷答案点评(word文字版下载)
为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!
2022新高考全国一卷数学试卷
2022新高考全国一卷数学试卷答案解析参考
高考怎样填志愿
1、选择哪个学校
填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。
2、选择什么专业
选择专业最主要的是结合自己的兴趣和基础,或者 毕业 后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。
3、提前了解各个学校的情况
在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。
服从调剂意味着什么
1、增加了一次录取机会
在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。
如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。
2、服从调剂,不一定会被调剂到其他专业
从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。
如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。
3、专业调剂会调到哪里去?
专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。
高考之后可以去哪玩
1、云南
云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验 传说 中的女儿国,一个四季如春的地方很适合放松心情。
云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。
2、杭州
“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼……
3、重庆
说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。
4、厦门
厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜
5、西藏
西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。
6、九寨沟
九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。
7、桂林
“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游 热点 。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种 文化 的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。
2022新高考全国一卷数学试卷及答案解析相关 文章 :
★ 2022高考北京卷数学真题及答案解析
★ 2022高考全国乙卷试题及答案(理科)
★ 2022全国甲卷高考数学文科试卷及答案解析
★ 2022高考甲卷数学真题试卷及答案
★ 2022年北京高考数学试卷
★ 2022高考全国甲卷数学试题及答案
★ 2022全国新高考I卷语文试题及答案
★ 2022全国新高考Ⅰ卷英语试题及答案解析
★ 2022年全国新高考II卷数学真题及答案
★ 2022北京卷高考文科数学试题及答案解析
求解2012年数学高考山东卷16题(要过程)
核心提示:十字路口的“高考考点禁止鸣笛”分外醒目,身着荧光色的警察表情严肃,救护车到位,警车到位,家长们都在考点外候着。这便是青岛新东方学校老师们送考考点的一幕。经历了上午的语文考试,下午的考生和家长更显从容不迫。那下午的数学考试试题难度如何呢?
青岛新东方学校高中数学教研组
十字路口的“高考考点禁止鸣笛”分外醒目,身着荧光色的警察表情严肃,救护车到位,警车到位,家长们都在考点外候着。这便是青岛新东方学校老师们送考考点的一幕。经历了上午的语文考试,下午的考生和家长更显从容不迫。那下午的数学考试试题难度如何呢?
今年的数学试题,难度与去年相差不大。先看选择题,依次考察了集合的基本运算、复数的基本运算、三角函数图像的平移变换、求已知夹角和模长求向量的数量积、含绝对值的不等式解法、含参数的一元二次不等式组与简单的线性规划、立体几何求旋转体的体积、正态分布、直线与圆的位置关系、函数的综合考查;根据我们过去一年在高考班里练过的类型看,几乎全部是常练题型,没有生僻题型,题目难度以中低难度题目为主,最后一个选择属于中难题目。这里知识点的考查相对全面,都是平时练过的题目,没有新题,比较值得一提的是,选择题的第8题考查了理科生单独学的正态分布知识,这是山东自2005年自主命题以来继2010年之后第二次考查正态分布这个知识点,因此也对未参加高考的学生提个醒:只要是考纲要求的内容,不管平时是否常考,都应该不打折扣的学会和记住,学习上不能有投机心理,只要平时基本功做扎实了,加上考场内有稳定沉着的心态,对大部分考生而言,选择题不应该有明显失分。
2023年山东省高考数学难度
忘了图什么样了但大体过程我还想着,可能描述的不是很明白。题做过去很久了。 圆移动后那个圆心角对应的弧长等于2,看看图就能看出来。 α=l/r =2/1=2。 所以圆心角的弧度是2,再做过圆心平行于X轴的辅助线,那么上面那个小角的度数是(2-π/2),则P点的横坐标是2-cos(2-π2)化简得横坐标是2-sin2, 纵坐标是1+sin(2-π2)化简得纵坐标是1-cos2。 答案就是(2-sin2,1-cos2)
2009年山东高考理科数学问答试题及答案
2023年山东高考数学试卷总体难度适中,与往年相比略有提高。
考题概述
2023年山东高考数学试卷总体难度适中,与往年相比略有提高。试卷涵盖了数学的基础知识和常规应用,难度较为均衡,针对不同层次的考生都有相应难度的题目。
高考数学命题趋势
从近几年高考数学试卷命题趋势来看,试题难度逐年提高,并且注重综合素质和跨学科的应用能力,突出数学在科技创新和社会发展中的重要作用。
数学备考建议
为了顺利通过高考数学,考生需要把握复习重点和难点,注重巩固基础知识,勤做题、讲思路,提高解题能力,同时也要注重实际应用,多了解数学在生活中的应用场景。
数学在现代科技中的应用
数学是现代科技的重要支柱,广泛应用于人工智能、大数据分析、物联网等领域,对经济、社会和国家安全等发挥着不可替代的作用。
数学科研前沿
数学作为一门顶级学科,在各个领域都有着广泛的应用和研究。目前,人工智能、量子计算、拓扑理论等前沿领域正在快速发展,许多科研工作者正在探索新的理论和应用,推动着数学的快速发展。
数学与职业发展
数学在现代科技和经济发展中的重要作用,也为广大数学专业毕业生提供了更多就业机会。除了传统的教育、金融等领域,越来越多的互联网和科技公司开始注重数学人才的招聘,如算法工程师、数据分析师等,因此,掌握扎实的数学知识和解题能力对个人职业发展有着重要的意义。
数学学习的意义
数学是一门深奥而又充满魅力的学科,它不仅有着广泛的应用场景,而且在人类认知世界的过程中扮演了重要角色。通过学习数学,可以提高人们的逻辑思维能力、抽象思考能力和问题求解能力,对于培养创新精神和全面素质也有着积极的促进作用。
总之,2023年山东高考数学试卷难度适中,考生需要针对性地备考,提高解题能力和实际应用能力,同时也应该始终牢记,学习数学不仅是为了高考,更是为了人生的成长和发展。
2009年普通高等学校招生全国统一考试(山东卷)
理科数学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试时间120分钟。考试结束后,将本试卷和答题卡一并交回.
注意事项:
1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.。
参考公式:
柱体的体积公式V=Sh,其中S是柱体的底面积,h是锥体的高。
锥体的体积公式V= ,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);R如果事件A,B独立,那么P(AB)=P(A)P(B).
事件A在一次试验中发生的概率是 ,那么 次独立重复试验中事件A恰好发生 次的概率: .
第Ⅰ卷(共60分)
一、选择题:本大题共12小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合 , ,若 ,则 的值为( )
A.0 B.1 C.2 D.4
解析:∵ , , ∴ ∴ ,故选D.
答案:D
命题立意:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.
2.复数 等于( ).
A. B. C. D.
2. 解析: ,故选C. w.w.w.k.s.5.u.c.o.m
答案:C
命题立意:本题考查复数的除法运算,分子、分母需要同乘以分母的共轭复数,把分母变为实数,将除法转变为乘法进行运算.
3.将函数 的图象向左平移 个单位, 再向上平移1个单位,所得图象的函数解析式是( ).
A. B. C. D.
3. 解析:将函数 的图象向左平移 个单位,得到函数 即 的图象,再向上平移1个单位,所得图象的函数解析式为 ,故选B.
答案:B
命题立意:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形. w.w.w.k.s.5.u.c.o.m
4. 一空间几何体的三视图如图所示,则该几何体的体积为( ).
A. B. C. D.
解析:该空间几何体为一圆柱和一四棱锥组成的,
圆柱的底面半径为1,高为2,体积为 ,四棱锥的底面
边长为 ,高为 ,所以体积为
所以该几何体的体积为 .
答案:C
命题立意:本题考查了立体几何中的空间想象能力,
由三视图能够想象得到空间的立体图,并能准确地
计算出.几何体的体积.
5. 已知α,β表示两个不同的平面,m为平面α内的
一条直线,则“ ”是“ ”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:由平面与平面垂直的判定定理知如果m为平面α内的
一条直线, ,则 ,反过来则不一定.所以“ ”是“ ”的必要不充分条件. w.w.w.k.s.5.u.c.o.m
答案:B.
命题立意:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.
6. 函数 的图像大致为( ).
解析:函数有意义,需使 ,其定义域为 ,排除C,D,又因为 ,所以当 时函数为减函数,故选A. w.w.w.k.s.5.u.c.o.m
答案:A.
命题立意:本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质.
7.设P是△ABC所在平面内的一点, ,则( )
A. B. C. D.
解析:因为 ,所以点P为线段AC的中点,所以应该选B。
答案:B。
命题立意:本题考查了向量的加法运算和平行四边形法则,
可以借助图形解答。
8.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的w.w.w.k.s.5.u.c.o.m
产品净重(单位:克)数据绘制的频率分布直方图,其中产品
净重的范围是[96,106],样本数据分组为[96,98),[98,100),
[100,102),[102,104),[104,106],已知样本中产品净重小于
100克的个数是36,则样本中净重大于或等于98克并且
小于104克的产品的个数是( ).
A.90 B.75 C. 60 D.45
解析:产品净重小于100克的概率为(0.050+0.100)×2=0.300,
已知样本中产品净重小于100克的个数是36,设样本容量为 ,
则 ,所以 ,净重大于或等于98克并且小于
104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本
中净重大于或等于98克并且小于104克的产品的个数是
120×0.75=90.故选A.
答案:A
命题立意:本题考查了统计与概率的知识,读懂频率分布直方图,会计算概率以及样本中有关的数据.
9. 设双曲线 的一条渐近线与抛物线y=x +1 只有一个公共点,则双曲线的离心率为( ). w.w.w.k.s.5.u.c.o.m
A. B. 5 C. D.
解析:双曲线 的一条渐近线为 ,由方程组 ,消去y,得 有唯一解,所以△= ,
所以 , ,故选D. w.w.w.k.s.5.u.c.o.m
答案:D.
命题立意:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.
10. 定义在R上的函数f(x)满足f(x)= ,则f(2009)的值为( )
A.-1 B. 0 C.1 D. 2
解析:由已知得 , , ,
, ,
, , ,
所以函数f(x)的值以6为周期重复性出现.,所以f(2009)= f(5)=1,故选C.
答案:C.
命题立意:本题考查归纳推理以及函数的周期性和对数的运算.
11.在区间[-1,1]上随机取一个数x, 的值介于0到 之间的概率为( ).
A. B. C. D. w.w.w.k.s.5.u.c.o.m
解析:在区间[-1,1]上随机取一个数x,即 时,要使 的值介于0到 之间,需使 或 ∴ 或 ,区间长度为 ,由几何概型知 的值介于0到 之间的概率为 .故选A.
答案:A
命题立意:本题考查了三角函数的值域和几何概型问题,由自变量x的取值范围,得到函数值 的范围,再由长度型几何概型求得.
12. 设x,y满足约束条件 ,w.w.w.k.s.5.u.c.o.m
若目标函数z=ax+by(a>0,b>0)的值是最大值为12,
则 的最小值为( ).
A. B. C. D. 4
解析:不等式表示的平面区域如图所示阴影部分,当直线ax+by= z(a>0,b>0)
过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,
目标函数z=ax+by(a>0,b>0)取得最大12,
即4a+6b=12,即2a+3b=6, 而 = ,故选A.
答案:A
命题立意:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求 的最小值常用乘积进而用基本不等式解答. w.w.w.k.s.5.u.c.o.m
第 卷
二、填空题:本大题共4小题,每小题4分,共16分。
13.不等式 的解集为 .
解析:原不等式等价于不等式组① 或②
或③ 不等式组①无解,由②得 ,由③得 ,综上得 ,所以原不等式的解集为 . w.w.w.k.s.5.u.c.o.m
答案:
命题立意:本题考查了含有多个绝对值号的不等式的解法,需要根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案.本题涉及到分类讨论的数学思想.
14.若函数f(x)=a -x-a(a>0且a 1)有两个零点,则实数a的取值范围是 .
解析: 设函数 且 和函数 ,则函数f(x)=a -x-a(a>0且a 1)有两个零点, 就是函数 且 与函数 有两个交点,由图象可知当 时两函数只有一个交点,不符合,当 时,因为函数 的图象过点(0,1),而直线 所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a的取值范围是
答案: w.w.w.k.s.5.u.c.o.m
命题立意:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答.
15.执行右边的程序框图,输出的T= .
解析:按照程序框图依次执行为S=5,n=2,T=2;
S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;
S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30
答案:30
命题立意:本题主要考查了循环结构的程序框图,一般都可以
反复的进行运算直到满足条件结束,本题中涉及到三个变量,
注意每个变量的运行结果和执行情况.
16.已知定义在R上的奇函数 ,满足 ,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间 上有四个不同的根 ,则 w.w.w.k.s.5.u.c.o.m
解析:因为定义在R上的奇函数,满足 ,所以 ,所以, 由 为奇函数,所以函数图象关于直线 对称且 ,由 知 ,所以函数是以8为周期的周期函数,又因为 在区间[0,2]上是增函数,所以 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间 上有四个不同的根 ,不妨设 由对称性知 所以
答案:-8
命题立意:本题综合考查了函数的奇偶性,单调性,
对称性,周期性,以及由函数图象解答方程问题,
运用数形结合的思想和函数与方程的思想解答问题.
三、解答题:本大题共6分,共74分。
17.(本小题满分12分)设函数f(x)=cos(2x+ )+sin x.
(1) 求函数f(x)的最大值和最小正周期.
(2) 设A,B,C为 ABC的三个内角,若cosB= , ,且C为锐角,求sinA.
解: (1)f(x)=cos(2x+ )+sin x.=
所以函数f(x)的最大值为 ,最小正周期 . w.w.w.k.s.5.u.c.o.m
(2) = =- , 所以 , 因为C为锐角, 所以 ,
又因为在 ABC 中, cosB= , 所以 , 所以w.w.w.k.s.5.u.c.o.m
.
命题立意:本题主要考查三角函数中两角和差的弦函数公式、二倍角公式、三角函数的性质以及三角形中的三角关系.
(18)(本小题满分12分)
如图,在直四棱柱ABCD-A B C D 中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA =2, E、E 、F分别是棱AD、AA 、AB的中点。
(1) 证明:直线EE //平面FCC ;
(2) 求二面角B-FC -C的余弦值。w.w.w.k.s.5.u.c.o.m
解法一:(1)在直四棱柱ABCD-A B C D 中,取A1B1的中点F1,
连接A1D,C1F1,CF1,因为AB=4, CD=2,且AB//CD,
所以CD=//A1F1,A1F1CD为平行四边形,所以CF1//A1D,
又因为E、E 分别是棱AD、AA 的中点,所以EE1//A1D,
所以CF1//EE1,又因为 平面FCC , 平面FCC ,
所以直线EE //平面FCC .
(2)因为AB=4, BC=CD=2, 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-A B C D 中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC -C的一个平面角, 在△BCF为正三角形中, ,在Rt△CC1F中, △OPF∽△CC1F,∵ ∴ , w.w.w.k.s.5.u.c.o.m
在Rt△OPF中, , ,所以二面角B-FC -C的余弦值为 .
解法二:(1)因为AB=4, BC=CD=2, F是棱AB的中点,
所以BF=BC=CF,△BCF为正三角形, 因为ABCD为
等腰梯形,所以∠BAC=∠ABC=60°,取AF的中点M,
连接DM,则DM⊥AB,所以DM⊥CD,
以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,
,则D(0,0,0),A( ,-1,0),F( ,1,0),C(0,2,0),
C1(0,2,2),E( , ,0),E1( ,-1,1),所以 , , 设平面CC1F的法向量为 则 所以 取 ,则 ,所以 ,所以直线EE //平面FCC . w.w.w.k.s.5.u.c.o.m
(2) ,设平面BFC1的法向量为 ,则 所以 ,取 ,则 ,
, , w.w.w.k.s.5.u.c.o.m
所以 ,由图可知二面角B-FC -C为锐角,所以二面角B-FC -C的余弦值为 . w.w.w.k.s.5.u.c.o.m
命题立意:本题主要考查直棱柱的概念、线面位置关系的判定和二面角的计算.考查空间想象能力和推理运算能力,以及应用向量知识解答问题的能力.
(19)(本小题满分12分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q 为0.25,在B处的命中率为q ,该同学选择先在A处投一球,以后都在B处投,用 表示该同学投篮训练结束后所得的总分,其分布列为
0 2 3 4 5
w.w.w.k.s.5.u.c.o.m p
0.03 P1 P2 P3 P4
(1) 求q 的值;w.w.w.k.s.5.u.c.o.m
(2) 求随机变量 的数学期望E ;
(3) 试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。
解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25, , P(B)= q , .
根据分布列知: =0时 =0.03,所以 ,q =0.8.
(2)当 =2时, P1= w.w.w.k.s.5.u.c.o.m
=0.75 q ( )×2=1.5 q ( )=0.24
当 =3时, P2 = =0.01,
当 =4时, P3= =0.48,
当 =5时, P4=
=0.24
所以随机变量 的分布列为
0 2 3 4 5
p 0.03 0.24 0.01 0.48 0.24
随机变量 的数学期望
(3)该同学选择都在B处投篮得分超过3分的概率为
;
该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.
由此看来该同学选择都在B处投篮得分超过3分的概率大.
命题立意:本题主要考查了互斥事件的概率,相互独立事件的概率和数学期望,以及运用概率知识解决问题的能力.
(20)(本小题满分12分)
等比数列{ }的前n项和为 , 已知对任意的 ,点 ,均在函数 且 均为常数)的图像上.
(1)求r的值;
(11)当b=2时,记
证明:对任意的 ,不等式 成立
解:因为对任意的 ,点 ,均在函数 且 均为常数的图像上.所以得 ,当 时, ,当 时, ,又因为{ }为等比数列,所以 ,公比为 ,
(2)当b=2时, ,
则 ,所以
下面用数学归纳法证明不等式 成立.
① 当 时,左边= ,右边= ,因为 ,所以不等式成立.
② 假设当 时不等式成立,即 成立.则当 时,左边=
所以当 时,不等式也成立.
由①、②可得不等式恒成立.
命题立意:本题主要考查了等比数列的定义,通项公式,以及已知 求 的基本题型,并运用数学归纳法证明与自然数有关的命题,以及放缩法证明不等式.
(21)(本小题满分12分)
两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧 上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在 的中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(11)讨论(1)中函数的单调性,并判断弧 上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。
解法一:(1)如图,由题意知AC⊥BC, ,
其中当 时,y=0.065,所以k=9
所以y表示成x的函数为
(2) , ,令 得 ,所以 ,即 ,当 时, ,即 所以函数为单调减函数,当 时, ,即 所以函数为单调增函数.所以当 时, 即当C点到城A的距离为 时, 函数 有最小值.
解法二: (1)同上.
(2)设 ,
则 , ,所以
当且仅当 即 时取”=”.
下面证明函数 在(0,160)上为减函数, 在(160,400)上为增函数.
设0<m1<m2<160,则
,
因为0<m1<m2<160,所以4 >4×240×240
9 m1m2<9×160×160所以 ,
所以 即 函数 在(0,160)上为减函数.
同理,函数 在(160,400)上为增函数,设160<m1<m2<400,则
因为1600<m1<m2<400,所以4 <4×240×240, 9 m1m2>9×160×160
所以 ,
所以 即 函数 在(160,400)上为增函数.
所以当m=160即 时取”=”,函数y有最小值,
所以弧 上存在一点,当 时使建在此处的垃圾处理厂对城A和城B的总影响度最小.
命题立意:本题主要考查了函数在实际问题中的应用,运用待定系数法求解函数解析式的 能力和运用换元法和基本不等式研究函数的单调性等问题.
(22)(本小题满分14分)
设椭圆E: (a,b>0)过M(2, ) ,N( ,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 ?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
解:(1)因为椭圆E: (a,b>0)过M(2, ) ,N( ,1)两点,
所以 解得 所以 椭圆E的方程为
(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 ,设该圆的切线方程为 解方程组 得 ,即 ,
则△= ,即
, 要使 ,需使 ,即 ,所以 ,所以 又 ,所以 ,所以 ,即 或 ,因为直线 为圆心在原点的圆的一条切线,所以圆的半径为 , , ,所求的圆为 ,此时圆的切线 都满足 或 ,而当切线的斜率不存在时切线为 与椭圆 的两个交点为 或 满足 ,综上, 存在圆心在原点的圆 ,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 .
因为 ,
所以 ,
,
①当 时
因为 所以 ,
所以 ,
所以 当且仅当 时取”=”.
② 当 时, .
③ 当AB的斜率不存在时, 两个交点为 或 ,所以此时 ,
综上, |AB |的取值范围为 即:
命题立意:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系.