您现在的位置是: 首页 > 高考调剂 高考调剂
2015浙江理科数学高考卷及答案_高考数列2015浙江
tamoadmin 2024-06-12 人已围观
简介1.今年高考浙江数学卷难吗2.想知道2011年数学高考试题和答案(浙江卷)3.09浙江高考浙江文科数学答案您好,您是想问2018浙江高考数学难不难吗?2018浙江高考数学难。2018年浙江高考采用自主命题的形式,根据考完的考生反映,今年浙江的高考数学考试难度很大,把原来最后一题的数列改到饿了导数第三题,原来倒数第三天的导数改到了最后一题,不光有所变动大题的整体难度还很大,考完数学让浙江的考生表示很
1.今年高考浙江数学卷难吗
2.想知道2011年数学高考试题和答案(浙江卷)
3.09浙江高考浙江文科数学答案
您好,您是想问2018浙江高考数学难不难吗?2018浙江高考数学难。2018年浙江高考采用自主命题的形式,根据考完的考生反映,今年浙江的高考数学考试难度很大,把原来最后一题的数列改到饿了导数第三题,原来倒数第三天的导数改到了最后一题,不光有所变动大题的整体难度还很大,考完数学让浙江的考生表示很苦恼。
今年高考浙江数学卷难吗
<p>解:f′(x)=ex(x-a)[x2+(3-a+b)x+2b-ab-a],</p><p>令g(x)=x2+(3-a+b)x+2b-ab-a,</p><p>则△=(3-a+b)2-4(2b-ab-a)=(a+b-1)2+8>0,</p><p>于是,假设x1,x2是g(x)=0的两个实根,且x1<x2.</p><p>(1)当x1=a或x2=a时,则x=a不是f(x)的极值点,此时不合题意.</p><p>(2)当x1≠a且x2≠a时,由于x=a是f(x)的极大值点,故x1<a<x2.</p><p>即g(a)<0</p><p>即a2+(3-a+b)a+2b-ab-a<0</p><p>所以b<-a</p><p>所以b的取值范围是:(-∞,-a)</p><p><img?src="9517293104"?/></p>
想知道2011年数学高考试题和答案(浙江卷)
今年高考浙江数学卷难。
2023年浙江高考数学试卷选用的是“全国数学1卷”,又叫作“新高考数学Ⅰ卷”,2023浙江高考数学试题总体来说难度有所增加。本试卷共4页,22小题。满分150分,考试用时120分钟。
考察内容:
试卷注重对高中基础内容的全面考查,集合、复数、常用逻辑用语、线性规划、平面向量、算法、二项式定理等内容在选择题、填空题中得到了有效的考查。
在此基础上,试卷强调对主干内容的重点考查,体现了全面性、基础性和综合性的考查要求。在解答题中重点考查了函数、导数、三角函数、概率统计数列、立体几何、直线与圆锥曲线等主千内容。
答卷前注意:
考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。用 2B铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。
2023高考数学答题技巧:
1、填空题
第一、直接从题干出发数学解选择、填空题的基本原则是“小题不可大做”考虑,探求结果;第二、从题干和选择联合考虑;第三、从选择出发探求满足题干的条件。
解数学填空题基本方法有:直接求解法、图像法、构造法和特殊化法(如特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特殊模型等)。
2、细答解答题
数学规范答题很重要,找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。
答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。即使过程比较简单,也要简要地写出基本步骤,否则会被扣分。分步列式,尽量避免用综合或连等式。高考数学评分是分步给分,写出每一个过程对应的式子,只要表达正确都可以得到相应的分数
09浙江高考浙江文科数学答案
2011年普通高等学校招生全国统一考试(浙江卷)
理科数学
一、选择题
(1)设函数
,则实数
=
(A)-4或-2
(B)-4或2
(C)-2或4
(D)-2或2
(2)把复数
的共轭复数记作
,i为虚数单位,若
(A)3-i
(B)3+i
(C)1+3i
(D)3
(3)若某集合体的三视图如图所示,则这个集合体的直观图可以是
(4)下列命题中错误的是
(A)如果平面
,那么平面
内一定存在直线平行于平面
(B)如果平面
不垂直于平面
,那么平面
内一定不存在直线垂直于平面
(C)如果平面
,平面
,那么
(D)如果平面
,那么平面
内所有直线都垂直于平面
(5)设实数
满足不等式组
若
为整数,则
的最小值是
(A)14
(B)16
(C)17
(D)19
(6)若
,则
(A)
(B)
(C)
(D)
(7)若
为实数,则“
”是
的
(A)充分而不必要条件
(B)必要而不充分条件
(C)充分必要条件
(D)既不充分也不必要条件
(8)已知椭圆
与双曲线
有公共的焦点,
的一条渐近线与以
的长轴为直径的圆相交于
两点,
若
恰好将线段
三等分,则
(A)
(B)
(C)
(D)
(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率
(A)
(B)
(C)
D
(10)设a,b,c为实数,f(x)
=(x+a)
.记集合S=
若
分别为集合元素S,T的元素个数,则下列结论不可能的是
(A)
=1且
=0
(B)
(C)
=2且
=2
(D)
=2且
=3
非选择题部分
(共100分)
二、填空题:本大题共7小题,每小题4分,共28分
(11)若函数
为偶函数,则实数
=
(12)若某程序图如图所
示,则该程序运行后输出的k的值是
(13)设二项式(x-
)n(a>0)的展开式中X的系数为A,常数项为B,
若B=4A,则a的值是
(14)若平面向量α,β满足|α|≤1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为
,则α与β的夹角
的取值范围是
(15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公
司投递了个人简历,假定该毕业生得到甲公司面试的概率为
,得到乙公司面试的概率为
,且三个公司是否让其面试是相互独立的。记X为该毕业生得到面试得公司个数。若
,则随机变量X的数学期望
(16)设
为实数,若
则
的最大值是
.。
(17)设
分别为椭圆
的焦点,点
在椭圆上,若
;则点
的坐标是
.
三、解答题;本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
(18)(本题满分14分)在
中,角
所对的边分别为a,b,c.
已知
且
.
(Ⅰ)当
时,求
的值;
(Ⅱ)若角
为锐角,求p的取值范围;
(19)(本题满分14分)已知公差不为0的等差数列
的首项
为a(
),设数列的前n项和为
,且
成等比数列
(1)求数列
的通项公式及
(2)记
,当
时,试比较
与
的大小.
(20)(本题满分15分)如图,在三棱锥
中,
,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2
(Ⅰ)证明:AP⊥BC;
(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-β为直二面
角?若存在,求出AM的长;若不存在,请说明理由。
(21)(本题满分15分)已知抛物线
:
=
,圆
:
的圆心为点M
(Ⅰ)求点M到抛物线
的准
线的距离;
(Ⅱ)已知点P是抛物线
上一点(异于原点),过点P作圆
的两条切线,交抛物线
于A,B两点,若过M,P两点的直线
垂直于
AB,求直线
的方程
(22)(本题满分14分)
设函数
(I)若
的极值点,求实数
(II)求实数
的取值范围,使得对任意的
,恒有
成立,注:
为自然对数的底数。
2009年浙江高考文科数学试题和答案
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设 , , ,则 ( )
A. B. C. D.
1. B 命题意图本小题主要考查了集合中的补集、交集的知识,在集合的运算考查对于集合理解和掌握的程度,当然也很好地考查了不等式的基本性质.
解析 对于 ,因此 .
2.“ ”是“ ”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
2. A 命题意图本小题主要考查了命题的基本关系,题中的设问通过对不等关系的分析,考查了命题的概念和对于命题概念的理解程度.
解析对于“ ” “ ”;反之不一定成立,因此“ ”是“ ”的充分而不必要条件.
3.设 ( 是虚数单位),则 ( )
A. B. C. D.
3.D 命题意图本小题主要考查了复数的运算和复数的概念,以复数的运算为载体,直接考查了对于复数概念和性质的理解程度.
解析对于
4.设 是两个不同的平面, 是一条直线,以下命题正确的是( )
A.若 ,则 B.若 ,则
C.若 ,则 D.若 ,则
4.C 命题意图此题主要考查立体几何的线面、面面的位置关系,通过对平行和垂直的考查,充分调动了立体几何中的基本元素关系.
解析对于A、B、D均可能出现 ,而对于C是正确的.
5.已知向量 , .若向量 满足 , ,则 ( )
A. B. C. D.
5.D 命题意图此题主要考查了平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.
解析不妨设 ,则 ,对于 ,则有 ;又 ,则有 ,则有
6.已知椭圆 的左焦点为 ,右顶点为 ,点 在椭圆上,且 轴, 直线 交 轴于点 .若 ,则椭圆的离心率是( )
A. B. C. D.
6.D 命题意图对于对解析几何中与平面向量结合的考查,既体现了几何与向量的交汇,也体现了数形结合的巧妙应用.
解析对于椭圆,因为 ,则
7.某程序框图如图所示,该程序运行后输出的 的值是( )
A. B.
C. D.
7.A 命题意图此题考查了程序语言的概念和基本的应用,通过对程序语言的考查,充分体现了数学程序语言中循环语言的关键.
解析对于 ,而对于 ,则 ,后面是 ,不符合条件时输出的 .
8.若函数 ,则下列结论正确的是( )
A. , 在 上是增函数
B. , 在 上是减函数
C. , 是偶函数
D. , 是奇函数
8.C 命题意图此题主要考查了全称量词与存在量词的概念和基础知识,通过对量词的考查结合函数的性质进行了交汇设问.
解析对于 时有 是一个偶函数
9.已知三角形的三边长分别为 ,则它的边与半径为 的圆的公共点个数最多为( )
A. B. C. D.
9.C 命题意图此题很好地考查了平面几何的知识,全面而不失灵活,考查的方法上面的要求平实而不失灵动,既有切线与圆的位置,也有圆的移动
解析对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.
10.已知 是实数,则函数 的图象不可能是( )
10.D 命题意图此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度.
解析对于振幅大于1时,三角函数的周期为 ,而D不符合要求,它的振幅大于1,但周期反而大于了 .
非选择题部分(共100分)
注意事项:
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
二、填空题:本大题共7小题,每小题4分,共28分。
11.设等比数列 的公比 ,前 项和为 ,则 .
11.15 命题意图此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分体现了通项公式和前 项和的知识联系.
解析对于
12.若某几何体的三视图(单位: )如图所示,则此几何体的体积是 .
12. 18 命题意图此题主要是考查了几何体的三视图,通过三视图的考查充分体现了几何体直观的考查要求,与表面积和体积结合的考查方法.
解析该几何体是由二个长方体组成,下面体积为 ,上面的长方体体积为 ,因此其几何体的体积为18
13.若实数 满足不等式组 则 的最小值是 .
13. 4命题意图此题主要是考查了线性规划中的最值问题,此题的考查既体现了正确画线性区域的要求,也体现了线性目标函数最值求解的要求
解析通过画出其线性规划,可知直线 过点 时,
14.某个容量为 的样本的频率分布直方图如下,则在区间 上的数据的频数为 .
14. 30命题意图此题考查了频率分布直方图,通过设问既考查了设图能力,也考查了运用图表解决实际问题的水平和能力
解析对于在区间 的频率/组距的数值为 ,而总数为100,因此频数为30
15.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:
高峰时间段用电价格表 低谷时间段用电价格表
高峰月用电量
(单位:千瓦时) 高峰电价
(单位:元/千瓦时) 低谷月用电量
(单位:千瓦时) 低谷电价
(单位:元/千瓦时)
50及以下的部分 0.568 50及以下的部分 0.288
超过50至200的部分 0.598 超过50至200的部分 0.318
超过200的部分 0.668 超过200的部分 0.388
若某家庭5月份的高峰时间段用电量为 千瓦时,低谷时间段用电量为 千瓦时,
则按这种计费方式该家庭本月应付的电费为 元(用数字作答).
15. 命题意图此题是一个实际应用性问题,通过对实际生活中的电费的计算,既考查了函数的概念,更侧重地考查了分段函数的应用
解析对于应付的电费应分二部分构成,高峰部分为 ;对于低峰部分为 ,二部分之和为
16.设等差数列 的前 项和为 ,则 , , , 成等差数列.类比以上结论有:设等比数列 的前 项积为 ,则 , , , 成等比数列.
16. 命题意图此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力
解析对于等比数列,通过类比,有等比数列 的前 项积为 ,则 , , 成等比数列.
17.有 张卡片,每张卡片上分别标有两个连续的自然数 ,其中 .
从这 张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到
标有 的卡片,则卡片上两个数的各位数字之和为 )不小于 ”为 ,
则 .
17. 命题意图此题是一个排列组合问题,既考查了分析问题,解决问题的能力,更侧重于考查学生便举问题解决实际困难的能力和水平
解析对于大于14的点数的情况通过列举可得有5种情况,即 ,而基本事件有20种,因此
三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分)在 中,角 所对的边分别为 ,且满足 ,
. (I)求 的面积; (II)若 ,求 的值.
18.解析:(Ⅰ)
又 , ,而 ,所以 ,所以 的面积为:
(Ⅱ)由(Ⅰ)知 ,而 ,所以
所以
19.(本题满分14分)如图, 平面 , , , , 分别为 的中点.(I)证明: 平面 ;(II)求 与平面 所成角的正弦值.
19.(Ⅰ)证明:连接 , 在 中, 分别是 的中点,所以 , 又 ,所以 ,又 平面ACD ,DC 平面ACD, 所以 平面ACD
(Ⅱ)在 中, ,所以
而DC 平面ABC, ,所以 平面ABC
而 平面ABE, 所以平面ABE 平面ABC, 所以 平面ABE
由(Ⅰ)知四边形DCQP是平行四边形,所以
所以 平面ABE, 所以直线AD在平面ABE内的射影是AP,
所以直线AD与平面ABE所成角是
在 中, ,
所以
20.(本题满分14分)设 为数列 的前 项和, , ,其中 是常数.
(I) 求 及 ;
(II)若对于任意的 , , , 成等比数列,求 的值.
20、解析:(Ⅰ)当 ,
( )
经验, ( )式成立,
(Ⅱ) 成等比数列, ,
即 ,整理得: ,
对任意的 成立,
21.(本题满分15分)已知函数 .
(I)若函数 的图象过原点,且在原点处的切线斜率是 ,求 的值;
(II)若函数 在区间 上不单调,求 的取值范围.
解析:(Ⅰ)由题意得
又 ,解得 , 或
(Ⅱ)函数 在区间 不单调,等价于
导函数 在 既能取到大于0的实数,又能取到小于0的实数
即函数 在 上存在零点,根据零点存在定理,有
, 即:
整理得: ,解得
22.(本题满分15分)已知抛物线 : 上一点 到其焦点的距离为 .
(I)求 与 的值;
(II)设抛物线 上一点 的横坐标为 ,过 的直线交 于另一点 ,交 轴于点 ,过点 作 的垂线交 于另一点 .若 是 的切线,求 的最小值.
22.解析(Ⅰ)由抛物线方程得其准线方程: ,根据抛物线定义
点 到焦点的距离等于它到准线的距离,即 ,解得
抛物线方程为: ,将 代入抛物线方程,解得
(Ⅱ)由题意知,过点 的直线 斜率存在且不为0,设其为 。
则 ,当 则 。
联立方程 ,整理得:
即: ,解得 或
,而 , 直线 斜率为
,联立方程
整理得: ,即:
,解得: ,或
,
而抛物线在点N处切线斜率:
MN是抛物线的切线, , 整理得
,解得 (舍去),或 ,