您现在的位置是: 首页 > 高考调剂 高考调剂

2015浙江理科数学高考卷及答案_高考数列2015浙江

tamoadmin 2024-06-12 人已围观

简介1.今年高考浙江数学卷难吗2.想知道2011年数学高考试题和答案(浙江卷)3.09浙江高考浙江文科数学答案您好,您是想问2018浙江高考数学难不难吗?2018浙江高考数学难。2018年浙江高考采用自主命题的形式,根据考完的考生反映,今年浙江的高考数学考试难度很大,把原来最后一题的数列改到饿了导数第三题,原来倒数第三天的导数改到了最后一题,不光有所变动大题的整体难度还很大,考完数学让浙江的考生表示很

1.今年高考浙江数学卷难吗

2.想知道2011年数学高考试题和答案(浙江卷)

3.09浙江高考浙江文科数学答案

2015浙江理科数学高考卷及答案_高考数列2015浙江

您好,您是想问2018浙江高考数学难不难吗?2018浙江高考数学难。2018年浙江高考采用自主命题的形式,根据考完的考生反映,今年浙江的高考数学考试难度很大,把原来最后一题的数列改到饿了导数第三题,原来倒数第三天的导数改到了最后一题,不光有所变动大题的整体难度还很大,考完数学让浙江的考生表示很苦恼。

今年高考浙江数学卷难吗

<p>解:f′(x)=ex(x-a)[x2+(3-a+b)x+2b-ab-a],</p><p>令g(x)=x2+(3-a+b)x+2b-ab-a,</p><p>则△=(3-a+b)2-4(2b-ab-a)=(a+b-1)2+8>0,</p><p>于是,假设x1,x2是g(x)=0的两个实根,且x1<x2.</p><p>(1)当x1=a或x2=a时,则x=a不是f(x)的极值点,此时不合题意.</p><p>(2)当x1≠a且x2≠a时,由于x=a是f(x)的极大值点,故x1<a<x2.</p><p>即g(a)<0</p><p>即a2+(3-a+b)a+2b-ab-a<0</p><p>所以b<-a</p><p>所以b的取值范围是:(-∞,-a)</p><p><img?src="9517293104"?/></p>

想知道2011年数学高考试题和答案(浙江卷)

今年高考浙江数学卷难。

2023年浙江高考数学试卷选用的是“全国数学1卷”,又叫作“新高考数学Ⅰ卷”,2023浙江高考数学试题总体来说难度有所增加。本试卷共4页,22小题。满分150分,考试用时120分钟。

考察内容:

试卷注重对高中基础内容的全面考查,集合、复数、常用逻辑用语、线性规划、平面向量、算法、二项式定理等内容在选择题、填空题中得到了有效的考查。

在此基础上,试卷强调对主干内容的重点考查,体现了全面性、基础性和综合性的考查要求。在解答题中重点考查了函数、导数、三角函数、概率统计数列、立体几何、直线与圆锥曲线等主千内容。

答卷前注意:

考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。用 2B铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。

2023高考数学答题技巧:

1、填空题

第一、直接从题干出发数学解选择、填空题的基本原则是“小题不可大做”考虑,探求结果;第二、从题干和选择联合考虑;第三、从选择出发探求满足题干的条件。

解数学填空题基本方法有:直接求解法、图像法、构造法和特殊化法(如特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特殊模型等)。

2、细答解答题

数学规范答题很重要,找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。

答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。即使过程比较简单,也要简要地写出基本步骤,否则会被扣分。分步列式,尽量避免用综合或连等式。高考数学评分是分步给分,写出每一个过程对应的式子,只要表达正确都可以得到相应的分数

09浙江高考浙江文科数学答案

2011年普通高等学校招生全国统一考试(浙江卷)

理科数学

一、选择题

(1)设函数

,则实数

=

(A)-4或-2

(B)-4或2

(C)-2或4

(D)-2或2

(2)把复数

的共轭复数记作

,i为虚数单位,若

(A)3-i

(B)3+i

(C)1+3i

(D)3

(3)若某集合体的三视图如图所示,则这个集合体的直观图可以是

(4)下列命题中错误的是

(A)如果平面

,那么平面

内一定存在直线平行于平面

(B)如果平面

不垂直于平面

,那么平面

内一定不存在直线垂直于平面

(C)如果平面

,平面

,那么

(D)如果平面

,那么平面

内所有直线都垂直于平面

(5)设实数

满足不等式组

为整数,则

的最小值是

(A)14

(B)16

(C)17

(D)19

(6)若

,则

(A)

(B)

(C)

(D)

(7)若

为实数,则“

”是

(A)充分而不必要条件

(B)必要而不充分条件

(C)充分必要条件

(D)既不充分也不必要条件

(8)已知椭圆

与双曲线

有公共的焦点,

的一条渐近线与以

的长轴为直径的圆相交于

两点,

恰好将线段

三等分,则

(A)

(B)

(C)

(D)

(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率

(A)

(B)

(C)

D

(10)设a,b,c为实数,f(x)

=(x+a)

.记集合S=

分别为集合元素S,T的元素个数,则下列结论不可能的是

(A)

=1且

=0

(B)

(C)

=2且

=2

(D)

=2且

=3

非选择题部分

(共100分)

二、填空题:本大题共7小题,每小题4分,共28分

(11)若函数

为偶函数,则实数

=

(12)若某程序图如图所

示,则该程序运行后输出的k的值是

(13)设二项式(x-

)n(a>0)的展开式中X的系数为A,常数项为B,

若B=4A,则a的值是

(14)若平面向量α,β满足|α|≤1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为

,则α与β的夹角

的取值范围是

(15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公

司投递了个人简历,假定该毕业生得到甲公司面试的概率为

,得到乙公司面试的概率为

,且三个公司是否让其面试是相互独立的。记X为该毕业生得到面试得公司个数。若

,则随机变量X的数学期望

(16)设

为实数,若

的最大值是

.。

(17)设

分别为椭圆

的焦点,点

在椭圆上,若

;则点

的坐标是

.

三、解答题;本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。

(18)(本题满分14分)在

中,角

所对的边分别为a,b,c.

已知

.

(Ⅰ)当

时,求

的值;

(Ⅱ)若角

为锐角,求p的取值范围;

(19)(本题满分14分)已知公差不为0的等差数列

的首项

为a(

),设数列的前n项和为

,且

成等比数列

(1)求数列

的通项公式及

(2)记

,当

时,试比较

的大小.

(20)(本题满分15分)如图,在三棱锥

中,

,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2

(Ⅰ)证明:AP⊥BC;

(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-β为直二面

角?若存在,求出AM的长;若不存在,请说明理由。

(21)(本题满分15分)已知抛物线

:

,圆

:

的圆心为点M

(Ⅰ)求点M到抛物线

的准

线的距离;

(Ⅱ)已知点P是抛物线

上一点(异于原点),过点P作圆

的两条切线,交抛物线

于A,B两点,若过M,P两点的直线

垂直于

AB,求直线

的方程

(22)(本题满分14分)

设函数

(I)若

的极值点,求实数

(II)求实数

的取值范围,使得对任意的

,恒有

成立,注:

为自然对数的底数。

2009年浙江高考文科数学试题和答案

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设 , , ,则 ( )

A. B. C. D.

1. B 命题意图本小题主要考查了集合中的补集、交集的知识,在集合的运算考查对于集合理解和掌握的程度,当然也很好地考查了不等式的基本性质.

解析 对于 ,因此 .

2.“ ”是“ ”的( )

A.充分而不必要条件 B.必要而不充分条件

C.充分必要条件 D.既不充分也不必要条件

2. A 命题意图本小题主要考查了命题的基本关系,题中的设问通过对不等关系的分析,考查了命题的概念和对于命题概念的理解程度.

解析对于“ ” “ ”;反之不一定成立,因此“ ”是“ ”的充分而不必要条件.

3.设 ( 是虚数单位),则 ( )

A. B. C. D.

3.D 命题意图本小题主要考查了复数的运算和复数的概念,以复数的运算为载体,直接考查了对于复数概念和性质的理解程度.

解析对于

4.设 是两个不同的平面, 是一条直线,以下命题正确的是( )

A.若 ,则 B.若 ,则

C.若 ,则 D.若 ,则

4.C 命题意图此题主要考查立体几何的线面、面面的位置关系,通过对平行和垂直的考查,充分调动了立体几何中的基本元素关系.

解析对于A、B、D均可能出现 ,而对于C是正确的.

5.已知向量 , .若向量 满足 , ,则 ( )

A. B. C. D.

5.D 命题意图此题主要考查了平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.

解析不妨设 ,则 ,对于 ,则有 ;又 ,则有 ,则有

6.已知椭圆 的左焦点为 ,右顶点为 ,点 在椭圆上,且 轴, 直线 交 轴于点 .若 ,则椭圆的离心率是( )

A. B. C. D.

6.D 命题意图对于对解析几何中与平面向量结合的考查,既体现了几何与向量的交汇,也体现了数形结合的巧妙应用.

解析对于椭圆,因为 ,则

7.某程序框图如图所示,该程序运行后输出的 的值是( )

A. B.

C. D.

7.A 命题意图此题考查了程序语言的概念和基本的应用,通过对程序语言的考查,充分体现了数学程序语言中循环语言的关键.

解析对于 ,而对于 ,则 ,后面是 ,不符合条件时输出的 .

8.若函数 ,则下列结论正确的是( )

A. , 在 上是增函数

B. , 在 上是减函数

C. , 是偶函数

D. , 是奇函数

8.C 命题意图此题主要考查了全称量词与存在量词的概念和基础知识,通过对量词的考查结合函数的性质进行了交汇设问.

解析对于 时有 是一个偶函数

9.已知三角形的三边长分别为 ,则它的边与半径为 的圆的公共点个数最多为( )

A. B. C. D.

9.C 命题意图此题很好地考查了平面几何的知识,全面而不失灵活,考查的方法上面的要求平实而不失灵动,既有切线与圆的位置,也有圆的移动

解析对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.

10.已知 是实数,则函数 的图象不可能是( )

10.D 命题意图此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度.

解析对于振幅大于1时,三角函数的周期为 ,而D不符合要求,它的振幅大于1,但周期反而大于了 .

非选择题部分(共100分)

注意事项:

1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

二、填空题:本大题共7小题,每小题4分,共28分。

11.设等比数列 的公比 ,前 项和为 ,则 .

11.15 命题意图此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分体现了通项公式和前 项和的知识联系.

解析对于

12.若某几何体的三视图(单位: )如图所示,则此几何体的体积是 .

12. 18 命题意图此题主要是考查了几何体的三视图,通过三视图的考查充分体现了几何体直观的考查要求,与表面积和体积结合的考查方法.

解析该几何体是由二个长方体组成,下面体积为 ,上面的长方体体积为 ,因此其几何体的体积为18

13.若实数 满足不等式组 则 的最小值是 .

13. 4命题意图此题主要是考查了线性规划中的最值问题,此题的考查既体现了正确画线性区域的要求,也体现了线性目标函数最值求解的要求

解析通过画出其线性规划,可知直线 过点 时,

14.某个容量为 的样本的频率分布直方图如下,则在区间 上的数据的频数为 .

14. 30命题意图此题考查了频率分布直方图,通过设问既考查了设图能力,也考查了运用图表解决实际问题的水平和能力

解析对于在区间 的频率/组距的数值为 ,而总数为100,因此频数为30

15.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:

高峰时间段用电价格表 低谷时间段用电价格表

高峰月用电量

(单位:千瓦时) 高峰电价

(单位:元/千瓦时) 低谷月用电量

(单位:千瓦时) 低谷电价

(单位:元/千瓦时)

50及以下的部分 0.568 50及以下的部分 0.288

超过50至200的部分 0.598 超过50至200的部分 0.318

超过200的部分 0.668 超过200的部分 0.388

若某家庭5月份的高峰时间段用电量为 千瓦时,低谷时间段用电量为 千瓦时,

则按这种计费方式该家庭本月应付的电费为 元(用数字作答).

15. 命题意图此题是一个实际应用性问题,通过对实际生活中的电费的计算,既考查了函数的概念,更侧重地考查了分段函数的应用

解析对于应付的电费应分二部分构成,高峰部分为 ;对于低峰部分为 ,二部分之和为

16.设等差数列 的前 项和为 ,则 , , , 成等差数列.类比以上结论有:设等比数列 的前 项积为 ,则 , , , 成等比数列.

16. 命题意图此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力

解析对于等比数列,通过类比,有等比数列 的前 项积为 ,则 , , 成等比数列.

17.有 张卡片,每张卡片上分别标有两个连续的自然数 ,其中 .

从这 张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到

标有 的卡片,则卡片上两个数的各位数字之和为 )不小于 ”为 ,

则 .

17. 命题意图此题是一个排列组合问题,既考查了分析问题,解决问题的能力,更侧重于考查学生便举问题解决实际困难的能力和水平

解析对于大于14的点数的情况通过列举可得有5种情况,即 ,而基本事件有20种,因此

三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。

18.(本题满分14分)在 中,角 所对的边分别为 ,且满足 ,

. (I)求 的面积; (II)若 ,求 的值.

18.解析:(Ⅰ)

又 , ,而 ,所以 ,所以 的面积为:

(Ⅱ)由(Ⅰ)知 ,而 ,所以

所以

19.(本题满分14分)如图, 平面 , , , , 分别为 的中点.(I)证明: 平面 ;(II)求 与平面 所成角的正弦值.

19.(Ⅰ)证明:连接 , 在 中, 分别是 的中点,所以 , 又 ,所以 ,又 平面ACD ,DC 平面ACD, 所以 平面ACD

(Ⅱ)在 中, ,所以

而DC 平面ABC, ,所以 平面ABC

而 平面ABE, 所以平面ABE 平面ABC, 所以 平面ABE

由(Ⅰ)知四边形DCQP是平行四边形,所以

所以 平面ABE, 所以直线AD在平面ABE内的射影是AP,

所以直线AD与平面ABE所成角是

在 中, ,

所以

20.(本题满分14分)设 为数列 的前 项和, , ,其中 是常数.

(I) 求 及 ;

(II)若对于任意的 , , , 成等比数列,求 的值.

20、解析:(Ⅰ)当 ,

( )

经验, ( )式成立,

(Ⅱ) 成等比数列, ,

即 ,整理得: ,

对任意的 成立,

21.(本题满分15分)已知函数 .

(I)若函数 的图象过原点,且在原点处的切线斜率是 ,求 的值;

(II)若函数 在区间 上不单调,求 的取值范围.

解析:(Ⅰ)由题意得

又 ,解得 , 或

(Ⅱ)函数 在区间 不单调,等价于

导函数 在 既能取到大于0的实数,又能取到小于0的实数

即函数 在 上存在零点,根据零点存在定理,有

, 即:

整理得: ,解得

22.(本题满分15分)已知抛物线 : 上一点 到其焦点的距离为 .

(I)求 与 的值;

(II)设抛物线 上一点 的横坐标为 ,过 的直线交 于另一点 ,交 轴于点 ,过点 作 的垂线交 于另一点 .若 是 的切线,求 的最小值.

22.解析(Ⅰ)由抛物线方程得其准线方程: ,根据抛物线定义

点 到焦点的距离等于它到准线的距离,即 ,解得

抛物线方程为: ,将 代入抛物线方程,解得

(Ⅱ)由题意知,过点 的直线 斜率存在且不为0,设其为 。

则 ,当 则 。

联立方程 ,整理得:

即: ,解得 或

,而 , 直线 斜率为

,联立方程

整理得: ,即:

,解得: ,或

而抛物线在点N处切线斜率:

MN是抛物线的切线, , 整理得

,解得 (舍去),或 ,

文章标签: # 考查 # 平面 # gt