您现在的位置是: 首页 > 高考调剂 高考调剂
高考数学数列大题,高考数学数列大题及答案解析
tamoadmin 2024-05-30 人已围观
简介1.高中数学解数列问题有哪些常用方法2.高考数列出大题吗3.一道数学数列和圆锥曲线结合的大题 我要详细的过程 思路也可以4.如何拿下高考数学最后五道大题5.在高考数学中,如果考生从1开始加,直到30,那么6.2017年高考数学必考等差数列公式2020高考数学题型之数列?链接: 提取码: vc58 复制这段内容后打开百度网盘手机App,操作更方便哦?若资源有问题欢迎追问~高中数学解数列问题有哪些常
1.高中数学解数列问题有哪些常用方法
2.高考数列出大题吗
3.一道数学数列和圆锥曲线结合的大题 我要详细的过程 思路也可以
4.如何拿下高考数学最后五道大题
5.在高考数学中,如果考生从1开始加,直到30,那么
6.2017年高考数学必考等差数列公式
2020高考数学题型之数列?
链接: 提取码: vc58 复制这段内容后打开百度网盘手机App,操作更方便哦?
若资源有问题欢迎追问~
高中数学解数列问题有哪些常用方法
高考数学六道大题的题型是:三角函数,概率,立体几何,函数,数列,解析几何。
1、三角函数。是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
2、概率。它是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。
3、立体几何。是3维欧氏空间的几何的传统名称,因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。
4、函数。数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
5、数列。是以正整数集(或它的有限子集)为定义域的一列有序的数。数列中的每一个数都叫做这个数列的项。
6、解析几何。是一种借助于解析式进行图形研究的几何学分支。
学习数学重要性:
1、数学与我们生活息息相关。要说学数学的真正效果,它不是体现在应试教育上,而是将来自身的思维上。
2、数学的重要性不言而喻。数学是一切科学的基础,是培养逻辑思维重要渠道,可以说我们人类的每一次重大进步都有数学这门学科在做强有力的支撑。
3、生活中的数学知识运用无处不在。从日常生活中柴米油盐的费用的计算,到天文地理、质量控制、农业经济、航天事业都存在着运用数学的影子。
高考数列出大题吗
数列问题解题方法技巧
1.判断和证明数列是等差(等比)数列常有三种方法:
(1)定义法:对于n≥2的任意自然数,验证 为同一常数。
(2)通项公式法:
①若 = +(n-1)d= +(n-k)d ,则 为等差数列;
②若 ,则 为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列 中,有关 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、数列问题解题注意事项
1.证明数列 是等差或等比数列常用定义,即通过证明 或 而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意 与 之间关系的转化。如:
= , = .
4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.
5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.原文链接: style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">一道数学数列和圆锥曲线结合的大题 我要详细的过程 思路也可以
数学最后一道大题往往是选做题,也是优等生和普通生拉开距离的一道题。那么,高考数学最后一道大题难吗?要怎么对待数学最后一道大题呢?下面和小编一起来看看吧!
1高考数学最后一道大题很难吗
1、最后一道大题难度和试卷整体难度不一定是正相关的。在高考的历史上,出现过绝大部分题目都很水,但是压轴题特别特别难的情况;也出现过大部分题目都较往年难度更大,但最后一道大题反而不是试卷上最难题目的情况。所以总有考生,前面的题目顺风顺水,死磕最后一道题做不出来耽误了太多时间,没有好好检查前面的反而考崩。也有考生考得完全丧失了信心直接连最后一题看都没看,到考完看到答案才觉得可惜了本来是可以拿到分的。希望各位考生调整好心态,安排好时间。
2、压轴题并不难,要是平时单独拿这一题出来让我做几乎是十拿九稳的。难的是在经历前面近两个小时的脑力和体力消耗后还要保持足够耐性,难的是顶着仅剩十多分钟或者更少的考试剩余时间带来的心理压力,难的是对于前面基础题的顾虑和对于压轴题的莫名恐惧。
3、每个省不一样,其实主要还是看命题组长是谁。教育弱省的压轴题一般都比较容易,都是函数求个导数的事。如果是自主命题就更简单,比如福建。但是如果碰上葛军这种人,就够你喝一壶的,因为你前面做得慢时间来不及,就显得最后一题特别难。如果碰上陶平生可以直接选择放弃,他会拿集训队题来坑你,就算你考试两个小时只写那一题都不见得写得出来。
2高考数学最后一道题怎么做
规范解答,分步得分
如果说小题是分数的基础,那么大题就是提分的保障。只有大题多得分,才能取得更高的总分。
在解答大题的时候,一定要稳扎稳打,尽可能得到所有该得的分数。
首先,审题要慢,做题要快。一定要逐字逐句审题,从题目本身获得尽可能多的信息。找到解题方法后,书写要简明扼要,尽量使用数学语言和符号,以节省时间。
小编推荐:面对高考数学试卷该如何应答
其次,先易后难,分段得分。总体而言,前三道大题和选做题,属中低档题目,应尽快准确完成。遇到不会做的题,也要尽可能多得分——高考的评分标准是分段给分,因此相应的对策就是分段得分。
最后,灵活处理,有所取舍。解答数学题需要步步推导,某一个环节出现意外很正常,这时不要钻牛角尖,而应灵活处理。比如,可以先从某一问题做起,先把会的题目解答出来,再回过头解答前面的题目,做到有所取舍,争取得到更高的分数。
如何拿下高考数学最后五道大题
这是一年的高考题吧
思路很简单
就是利用三角形的几何、也可以说是角度的关系
求出An横坐标的关系
第二问可以从第一步归纳出
也可以设an再用几何关系求啊a(n+1)
将a(n+1)用an来表示
第一问已经求出a1 了
就可以得出通项公式了
详细解答应该可以在以前的高考试题汇编的最后几道题有
应该 五年高考三年模拟 上有
不过照着思路去想
应该就可以做出来的 不会太难的
我记得以前第我一次没想出来
几天后再去想才弄出来的
加油哦!
相信自己
在高考数学中,如果考生从1开始加,直到30,那么
高考 数学最后几道大题往往是考试得分的关键,那怎样才能让孩子在考试中把握最后五道大题分呢?下面我为大家搜索整理了关于如何拿下 高考 数学最后五道大题,欢迎参考借鉴,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生培训网!
一道解答题:三角或数列
三角现状分析:
与数列相比考三角的概率更大,三角部分的公式性质非常多,很多考生特别是文科生对其记忆不牢,所以这道题虽然是第一道大题,难度较低,但得分情况并不理想。
复习方向:
对公式和性质强化记忆,力求准确熟练,特别注意二倍角公式、降幂公式、正余弦定理的应用,对公式的逆用应进行专题训练。
数列现状分析:
由于新课改增加了选做题,所以数列大题出现较少。
复习方向:
加强对等差、等比基本公式的认识,特别要求加强错位相减法、裂项相消法的求和训练,此题做完之后,一般在草纸上,令n=1,观察求得的S1与a1是否相等,如果不等,立刻检查。
数学第二道解答题:概率
概率现状分析:
很多时候是应用问题,需要学生有较强的阅读理解能力。此题经常一题多问,考多个知识点。
理科复习方向:
加强概率,分布列,期望的训练;根据分布列的概率之和等于1来进行检查。
文科复习方向:
加强古典概型,独立性检验,相关性分析的训练。
数学第三道解答题:立体几何
理科现状分析:
空间向量+立体几何,建系设点是入手点,建系之前要确定或证明三条线两两垂直,然后建立空间直角坐标系;整道题计算量较大,但思路较为清晰。
理科复习方向:
要理解和重视?法向量?的作用。
文科现状分析:
主要考查三个方面?平行,垂直,体积。
文科复习方向:
注意书写的规范性,例如证明线面平行,必须要说明线不在平面内;求证线面垂直,必须说明垂直于平面上两条相交直线,这些词语虽然简单,但很容易扣分。
数学第四道解答题:圆锥曲线
现状分析:
根据考纲的要求,大题考椭圆抛物线\双曲线大题几乎不考。
解题方向:
第一问,多数是求曲线的方程,离心率e,难度较低;
第二问,形式多样,这时要争取步骤分,多数情况为探究直线和曲线的位置关系。把直线带入曲线,得到x或y的一元二次方程,然后列出,并把相关数据代入,会大致得2分,这时一共会得到5~6分,如果接着根据题意,把韦达定理带入弦长公式,或者向量垂直公式,又会得到1~2分,这时可以收笔,做下一道题。
(注意:再继续计算的话,计算量较大,一般基础的同学在这里既浪费时间,又得不到分数,不如适时收笔,先做下一题的第一问,若有时间剩余,再回头补足不迟。)
数学第五道解答题:函数(导数)
现状分析:
压轴题,得分率较低。
解题方向:
第一问,求切线,讨论含参函数的单调性,求最值极值等,难度不是很大,给这一问留出时间,能得到4分左右。
第二问开始难度陡增,第三问是选拔140分以上的尖子生。
建议:
如果就两问,第二问放弃;如果是三问,第二问适当做做,第三问放弃。
2017年高考数学必考等差数列公式
每次相加到最后是:103741824分=1037418.24元
由题可知,为一个首项是1,公比是2,项数是30的一个等比数列。
等比数列前n项和公式为:?
1、Sn=n*a1(q=1)?
2、Sn=a1(1-q^n)/(1-q)?
=(a1-a1q^n)/(1-q)?
=a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)
(前提:q不等于 1)
注意:以上n均属于正整数。
扩展资料:等比数列性质
1、若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。
2、等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比数列中,首项A1与公比q都不为零。
注意:上述公式中A^n表示A的n次方。
3、由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)*q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
参考资料:百度百科-等比数列等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。
高中数学知识点:等差数列公式
等差数列公式an=a1+(n-1)d
a1为首项,an为第n项的通项公式,d为公差
前n项和公式为:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n.m.p.q均为正整数
解析:第n项的值an=首项+(项数-1)?公差
前n项的和Sn=首项?n+项数(项数-1)公差/2
公差d=(an-a1)?(n-1)
项数=(末项-首项)?公差+1
数列为奇数项时,前n项的和=中间项?项数
数列为偶数项,求首尾项相加,用它的和除以2
等差中项公式2an+1=an+an+2其中{an}是等差数列
通项公式:公差?项数+首项-公差
高中数学知识点:等差数列求和公式
若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:
S=(a1+an)n?2
即(首项+末项)?项数?2
前n项和公式
注意:n是正整数(相当于n个等差中项之和)
等差数列前N项求和,实际就是梯形公式的妙用:
上底为:a1首项,下底为a1+(n-1)d,高为n。
即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。
高中数学知识点:推理过程
设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:
当d?0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。
注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。
求和推导
证明:由题意得:
Sn=a1+a2+a3+。。。+an①
Sn=an+a(n-1)+a(n-2)+。。。+a1②
①+②得:
2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)
Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2
Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)
基本公式
公式 Sn=(a1+an)n/2
等差数列求和公式
Sn=na1+n(n-1)d/2; (d为公差)
Sn=An2+Bn; A=d/2,B=a1-(d/2)
和为 Sn
首项 a1
末项 an
公差d
项数n
表示方法
等差数列基本公式:
末项=首项+(项数-1)?公差
项数=(末项-首项)?公差+1
首项=末项-(项数-1)?公差
和=(首项+末项)?项数?2
差:首项+项数?(项数-1)?公差?2
说明
末项:最后一位数
首项:第一位数
项数:一共有几位数
和:求一共数的总和
本段通项公式
首项=2?和?项数-末项
末项=2?和?项数-首项
末项=首项+(项数-1)?公差:a1+(n-1)d
项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1
公差= d=(an-a1)/n-1
如:1+3+5+7+?99 公差就是3-1
将a1推广到am,则为:
d=(an-am)/n-m
基本性质
若 m、n、p、q?N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq(等差中项)